1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
3 years ago
6

What is the line called that has the red arrow pointing to it in the attached picture?

Engineering
1 answer:
Simora [160]3 years ago
8 0

Answer:

csvadbvns egv,ekrhvybge e yrbge ngeeeeerhjyk4 r5y erhyniner mbrltjhnprihmb fghurijmb fm nbjrkfb

Explanation:

You might be interested in
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
4 years ago
The pressure gage on a 2.5-m^3 oxygen tank reads 500 kPa. Determine the amount of oxygen in the tank if the temperature is 28°C
s2008m [1.1K]

Answer:

19063.6051 g

Explanation:

Pressure = Atmospheric pressure + Gauge Pressure

Atmospheric pressure = 97 kPa

Gauge pressure = 500 kPa

Total pressure = 500 + 97 kPa = 597 kPa

Also, P (kPa) = 1/101.325  P(atm)

Pressure = 5.89193 atm

Volume = 2.5 m³ = 2500 L ( As m³ = 1000 L)

Temperature = 28 °C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T₁ = (28.2 + 273.15) K = 301.15 K  

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

5.89193 atm × 2500 L = n × 0.0821 L.atm/K.mol × 301.15 K  

⇒n = 595.76 moles

Molar mass of oxygen gas = 31.9988 g/mol

Mass = Moles * Molar mass = 595.76 * 31.9988 g = 19063.6051 g

7 0
3 years ago
Can a 1½ " conduit, with a total area of 2.04 square inches, be filled with wires that total 0.93 square inches if the maximum f
Papessa [141]

Answer:

it is not possible to place the wires in the condui

Explanation:

given data

total area = 2.04 square inches

wires total area = 0.93 square inches

maximum fill conduit =  40%

to find out

Can it is possible place wire in conduit conduit

solution

we know maximum fill is 40%

so here first we get total area of conduit that will be

total area of conduit = 40% × 2.04

total area of conduit = 0.816 square inches

but this area is less than required area of wire that is 0.93 square inches

so we can say it is not possible to place the wires in the conduit

4 0
3 years ago
For each topic, find the total number of blurts that were analyzed as being related to the topic. Order the result by topic id.
photoshop1234 [79]

Answer:

Explanation: see attachment below

8 0
3 years ago
What are the optical properties of steel
dezoksy [38]

Answer:

A selective surface with large absorption for solar radiation and high reflectance for thermal infrared radiation was produced by use of surface oxidation of stainless steel. The surfaces were studied for use with concentrated light in a solar power plant at temperatures of 400°C and higher.

In order to investigate the relation between surface treatment and optical properties, stainless steels (AISI 304 and 430) which were submitted to different chemical and mechanical surface treatments, were used. To increase the spectral selectivity, these surfaces were treated in air and in vacuum at different temperatures and times. The optical properties of these films were investigated. Visual and infrared spectral absorptances were measured at room temperature. The thermal hemispherical emittance and absorptance were obtained by a calorimetric method at 200°C. It was noticed that these chemically and mechanically treated stainless steel surfaces have good spectral properties without further oxidations. This is very important for high temperature uses. The best values are found for samples 7 and 8 under vacuum and air. These two samples with mechanically ground surfaces retained their selectivity and specularity after several hours oxidation. One can conclude that the surface ground treatment confers good selectivity on the steel surfaces for use in concentrating solar collectors with a working temperature of 500°C.

Sample surfaces were subjected to long temperature ageing tests in order to gain some idea of the thermal stability of the surfaces. The results promise better-performing surface and the production of durable selective finishes at, possibly, lower cost than competing processes.

Explanation:

3 0
3 years ago
Other questions:
  • I dont undertand this coding problem (Java):
    8·1 answer
  • *6–24. The beam is used to support a dead load of 400 lb>ft, a live load of 2 k>ft, and a concentrated live load of 8 k. D
    13·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • A power of 100 kW (105 W) is delivered to the other side of a city by a pair of power lines, between which the voltage is 12,000
    9·1 answer
  • A car is traveling at 36 km/h on an acceleration lane to a freeway. What acceleration is required to obtain a speed of 72 km/h i
    12·1 answer
  • (2 points) A perfectly mixed aeration pond with no recycle serves as the biological reactor for a small community. The pond rece
    15·1 answer
  • A 0.91 m diameter corrugated metal pipe culvert (n = 0.024) has a length of 90 m and a slope of 0.0067. The entrance has a squar
    5·1 answer
  • Is a compass a analog or a digital sensor?
    14·1 answer
  • ¿Cómo llevan a cabo el lavado ropa?​
    8·1 answer
  • What current must flow if 0.24 coulombs is to be transferred in 15ms?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!