Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!
Answer:
a) 2.933 m
b) 4.534 m
Explanation:
We're given the equation
v(t) = -0.4t² + 2t
If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.
See attachment for the calculations
The conclusion of the attachment will be
7.467 - 2.933 and that is 4.534 m
Thus, The distance it travels in the second 2 sec is 4.534 m
Answer:
meter
The SI unit of distance and displacement is the meter [m].
Explanation:
have advancedd