When the car speeds up, slows down, or goes around a curve,
passengers need a force applied to them to make them do the
same thing, otherwise they won't keep up with the car.
The force on the passenger is applied by means of friction between
the upholstery and the seat of his pants, and also by the seat-back
or his seat-belt.
If you mean like electromagnetic waves then, Mico waves, UV rays, and infrared waves
Explanation:
The attached figure shows data for the cart speed, distance and time.
For low fan speed,
Distance, d = 500 cm
Time, t = 7.4 s
Average velocity,

Acceleration,

For medium fan speed,
Distance, d = 500 cm
Time, t = 6.4 s
Average velocity,

Acceleration,

For high fan speed,
Distance, d = 500 cm
Time, t = 5.6 s
Average velocity,

Acceleration,

Hence, this is the required solution.
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa
Answer:
D. Asthenosphere
Explanation:
The asthenosphere is relatively plastic part of the mantle which underlies the brittle lithosphere. In the asthenosphere, it is generally believed that the rocks are in ductile state and easily moves. It is the site of convection within the earth. In mantle convection, hot and light materials rises and keeps moving into upper crustal levels till they solidify. Here also, cold and denser materials sinks deeper till they turn to melt. This differences in temperature and density sets up a convective cell within the mantle. Several convective cells are in the mantle.