Answer:
Phuong works on a research project and creates a report for her boss.
Answer: double click at the top of the page. Or you can also go to home file and click add heading.
Explanation:
Answer:
The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.
Explanation:
For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.
Q = π(ΔPR⁴/8μL)
where Q = volumetric flowrate
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe
ΔP = μ(8QL/πR⁴)
ΔP = Kμ
K = (8QL/πR⁴) = constant (for this question)
ΔP = Kμ
K = (ΔP/μ)
So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).
μ₁ = (μ/2)
The new pressure drop (ΔP₁) is then
ΔP₁ = Kμ₁ = K(μ/2)
Recall,
K = (ΔP/μ)
ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)
Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.
Hope this Helps!!!
Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is

put here value with
turbine is insulated so q = 0
so here

solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW