1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
3 years ago
6

At what stage of development is an engineering team the most productive?

Engineering
2 answers:
andrew-mc [135]3 years ago
6 0
The forming stage I would have to go with.
Alexxx [7]3 years ago
3 0

Answer:

A

Explanation:

A because you are continuing to keep moving and thinking.

You might be interested in
What 2 forces move the secondary piston ahead?
jekas [21]

Answer:

The primary piston activates one of the two subsystems. The hydraulic pressure created, and the force of the primary piston spring, moves the secondary piston forward.

5 0
3 years ago
The human eye, as well as the light-sensitive chemicals on color photographic film, respond differently to light sources with di
jeka57 [31]

Answer:

a) at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

b) daylight (d) = 0.50 μm

    Incandescent ( i ) =  1 μm

Explanation:

To Calculate the band emission fractions we will apply the Wien's displacement Law

The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as

F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )

<em>Values are gotten from the table named: blackbody radiati</em>on functions

<u>a) Calculate the band emission fractions for the visible region</u>

at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

attached below is a detailed solution to the problem

<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>

For daylight ( d ) = 2898 μm *k / 5800 k  = 0.50 μm

For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm

3 0
3 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
4 years ago
Am I alive I really need to know?
Nesterboy [21]
Hell no,cause i’m not
5 0
3 years ago
A boiler is used to heat steam at a brewery to be used in various applications such as heating water to brew the beer and saniti
Natalija [7]

Answer:

net boiler heat = 301.94 kW

Explanation:

given data

saturated steam = 6.0 bars

temperature = 18°C

flow rate = 115 m³/h = 0.03194 m³/s

heat use by boiler = 90 %

to find out

rate of heat does the boiler output

solution

we can say saturated steam is produce at 6 bar from liquid water 18°C

we know at 6 bar from steam table

hg = 2756 kJ/kg

and

enthalpy of water at 18°C

hf = 75.64 kJ/kg

so heat required for 1 kg is

=hg - hf

= 2680.36 kJ/kg

and

from steam table specific volume of saturated steam at 6 bar is 0.315 m³/kg

so here mass flow rate is

mass flow rate = \frac{0.03194}{0.315}

mass flow rate m = 0.10139 kg/s

so heat required is

H = h × m  

here h is heat required and m is mass flow rate

H = 2680.36  × 0.10139

H =  271.75 kJ/s = 271.75 kW

now 90 % of boiler heat is used for generate saturated stream

so net boiler heat = \frac{H}{0.90}

net boiler heat = \frac{271.75}{0.90}

net boiler heat = 301.94 kW

5 0
3 years ago
Other questions:
  • The thermal efficiency of two reversible power cycles operating between the same thermal reservoirs will a)- depend on the mecha
    9·1 answer
  • Army people are good people right
    11·1 answer
  • Why is a building considered a type of system?
    6·1 answer
  • Pls help! 39 points!!
    5·2 answers
  • British standered institution
    5·1 answer
  • A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and
    11·1 answer
  • A Class A fire extingisher is for use on general combustibles such as:​
    14·1 answer
  • When nondeterminism results from multiple threads attempting to access a shared resource such as a shared variable or a shared f
    9·1 answer
  • Find the remaining trigonometric function of 0 if
    13·1 answer
  • I need the answer please
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!