1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
3 years ago
10

Is the COP of a heat pump always larger than 1?

Engineering
1 answer:
Liono4ka [1.6K]3 years ago
3 0

Answer:

Yes

Explanation:

Yes it is true that COP of heat pump always greater than 1.But the COP of refrigeration can be greater or less than 1.

We know that

COP of heat pump=  1 + COP of refrigeration

It is clear that COP can not be negative .So from the above expression we can say that COP of heat pump is always greater than one.  

You might be interested in
Air is compressed by a 30-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process as
adell [148]

Answer:

-0.1006Kw/K

Explanation:

The rate of entropy change in the air can be reduced from the heat transfer and the air temperature. Hence,

ΔS = Q/T

Where T is the constant absolute temperature of the system and Q is the heat transfer for the internally reversible process.

S(air) = - Q/T(air) .......1

Where S.air =

Q = 30-kW

T.air = 298k

Substitute the values into equation 1

S(air) = - 30/298

= -0.1006Kw/K

4 0
2 years ago
Sarah is developing a Risk Assessment for her organization. She is asking each department head how long can they be without thei
Natali [406]

Answer:

Sarah is asking each department head how long they can be without their primary system. Sarah is trying to determine the Recovery Time Objective (RTO) as this is the duration of time within which the primary system must be restored after the disruption.

Recovery Point Objective is basically to determine the age of restoration or recovery point.

Business recovery and technical recovery requirements are to assess the requirements to recover by Business or technically.

Hence, Recovery Time Objective (RTO) is the correct answer.

8 0
3 years ago
1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
Vesna [10]
I DONT KNOW OKAY UGHHH
6 0
3 years ago
At a point on the free surface of a stressed body, the normal stresses are 20 ksi (T) on a vertical plane and 30 ksi (C) on a ho
victus00 [196]

Answer:

The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero

Explanation:

The expression for the maximum shear stress is given:

\tau _{M} =\sqrt{(\frac{\sigma _{x}^{2}-\sigma _{y}^{2}  }{2})^{2}+\tau _{xy}^{2}    }

Where

σx = stress in vertical plane = 20 ksi

σy = stress in horizontal plane = -30 ksi

τM = 32 ksi

Replacing:

32=\sqrt{(\frac{20-(-30)}{2} )^{2} +\tau _{xy}^{2}  }

Solving for τxy:

τxy = ±19.98 ksi

The principal stress is:

\sigma _{x}+\sigma _{y} =\sigma _{p1}+\sigma _{p2}

Where

σp1 = 20 ksi

σp2 = -30 ksi

\sigma _{p1}  +\sigma _{p2}=-10 ksi (equation 1)

\tau _{M} =\frac{\sigma _{p1}-\sigma _{p2}}{2} \\\sigma _{p1}-\sigma _{p2}=2\tau _{M}\\\sigma _{p1}-\sigma _{p2}=32*2=64ksi equation 2

Solving both equations:

σp1 = 27 ksi

σp2 = -37 ksi

The shear stress on the vertical plane is zero

4 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Other questions:
  • Electricity is generated in two forms namely………A. Alternating current and wave form B. Alternating current and basic current C.
    7·2 answers
  • It has been estimated that 139.2x10^6 m^2 of rainforest is destroyed each day. assume that the initial area of tropical rainfore
    12·1 answer
  • If 100 J of heat is added to a system so that the final temperature of the system is 400 K, what is the change in entropy of the
    5·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • Please help on two I will give brainiest​
    13·2 answers
  • When you accelerate, the size of the front tire patch becomes____
    15·1 answer
  • A skull and crossbones pictogram indicates this kind of information about a chemical.
    14·1 answer
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
  • 8th grade safety test
    9·1 answer
  • the left rear brake drum is scored, but the right rear drum looks as good as new. technician a says the left-side drum should be
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!