1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
10

A ship's anchor weighs 5000N. It's cable passes over a roller of negligible mass and is wound around a hollow cylindrical drum o

f mass 380 kg and radius 1.1 m. The drum is mounted on a frictionless axle. The anchor is released and drops 16m to the water. Use energy considerations to determine the drum's rotation rate when the anchor hits the water. Neglect the mass of the cable.
Physics
1 answer:
deff fn [24]3 years ago
5 0
Hi! Great first step would be to understand the scenario (in my opinion). So two great ways would be to draw a picture or rephrase it. If something else works, do that! You just need to "see" the situation so that you can take some away from it.

Then I think a good next step is to conceptualize everything. Put everything into a context like a physics book would. The anchor is pulled 5000N downward - that's weight. The roller will act like a pulley, and we can ignore it's properties except that it's part of a pulley system (we can ignore stuff because it has "negligible" mass and no other details are given). And then we have the hollow cylindrical drum with one radius measurement given; so we can think of this as a made-up shape with mass - a cylindrical soda can without a top or bottom (but no thickness) and a 380kg mass. The anchor is drops 16m. It hints at energy. The energy that the drum gets is all do to this anchor pulling on the rope (which is really just a means of transferring force, since we neglect its mass and get no details).

Feel free to pause here to make sure you can get the scenario in your head.

So, we want to know something about the barrel as it's rolling. The rotation rate. How many turns per some time. But don't worry yet, we can find a way to work that in. Since the rope pulls and spins the drum, the drum is spun, and gets energy. One way to find the kinetic energy of the spinning drum uses the radius, mass, and rate of rotation. More on that soon.

And how does having some equation with the drum's kinetic energy, radius, mass, and rate of rotation help? Well, we can find all of those except our rate of rotation and solve for the rate of rotation. The energy is the only mystery, but that all comes from the dropping anchor. Can we find that energy? Yeah, there's a way to find the energy that gravity gives our anchor based on it's the force and how far that force moves it.

So, first for the anchor. Linear work is simple:  W=F d
So you have your force and distance we associate with the anchor, so you have your work. We'll call that "W_1" when we need it.

Next the drum's situation. Thanks to http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html, we have the equation for kinetic energy.
Generally, we have <em></em>KE=\frac12I\omega^2, and we need the "I," which deals with rotational inertia. That is pretty much how hard it is to rotate the drum based only on the idea that your getting the mass to move (acceleration). That site refers to our hollow drum as a "hoop," and gives says that we can consider the rotational inertia to be I=MR^2. Now that we know the rotational inertia, we can use good old mathematical substitution to get the kinetic energy to look like
KE=\frac12MR^2\omega^2
And we can rearrange that to get
\omega=\sqrt{\frac{2KE}{MR^2}}=\sqrt{\frac{2KE}{M}}\cdot\frac1R

Since the energy change from the anchor's fall is the energy change of the drum, this KE is the "W_1" from before. So
\omega=\sqrt{\frac{2W_1}{M}}\cdot\frac1R=\sqrt{\frac{2\left(F d\right)}{M}}\cdot\frac1R

Now everything's set up. It's a matter of checking my work, carefully using a calculator, and making sure the answer makes sense (ie. this should be a lot of energy - much more than 1 Joule). Also, follow up by making sure you can do it again, alone. And feel free to ask or lookup questions you need along the way if there are missing pieces in your understanding.

Good luck! :)
You might be interested in
How would you write the number 6,500,000,000 in scientific notation?
photoshop1234 [79]
Scientific form = 6.5 x 109.
8 0
3 years ago
How is the radiating electric field (or electromagnetic signal) produced when radio stations broadcast
Natali5045456 [20]

Answer:

Radio stations have dipole type antennas

this field increases in intensity and propagates outwards,

Explanation:

Radio stations have dipole type antennas, that is, all sides are isolated from each other, when the AC signal from the radio station arrives, the lcharge begins at times and by the Lens law a field appears that opposes this movement, this field increases in intensity and propagates outwards, when the voltage reaches a maximum, the generated wave also reaches the maximum, now the incident wave begins to decrease, an electric hand appears to oppose this prisoner, and in this way a cap is created. electric .

5 0
3 years ago
An infinite sheet of charge, oriented perpendicular to the x-axis, passes through x = 0. It has a surface charge density σ1 = -2
pishuonlain [190]

Answer:

E_{total}=4.82*10^6N/C

vector with direction equal to the axis X.

Explanation:

We use the Gauss Law and the superposition law in order to solve this problem.

<u>Superposition Law:</u> the Total Electric field is the sum of the electric field of the first infinite sheet and the Electric field of the second infinite sheet:

E_{total}=E_1+E_2

<u>Thanks Gauss Law</u> we know that the electric field of a infinite sheet with density of charge σ is:

E=\sigma/(2\epsilon_o)

Then:

E_{total}=(\sigma_1+\sigma_2)/(2\epsilon_o)=(-2.7*10^{-6}+88*10^{-6})/(2*8.85*10^{-12})=4.82*10^6N/C

This electric field has a direction in the axis perpendicular to the sheets, that means it has the same direction as the axis X.

7 0
3 years ago
Read 2 more answers
I need help on the data section of the circuit design lab on Edg.
Arte-miy333 [17]

I hope it's not too late, but here you go

8 0
3 years ago
How to measure the external diameter of a sphere
DanielleElmas [232]
Sphere is that the circular objects in the two dimensional space (1) circle
(2) disk. Two dimensional space is a set of points and the distance of that point,The two points of Sphere that length and center.
Sphere can constructed as the named of surface form circle about any diameter. circle is the special type of the revolution replacing the circle,
sphere is the distance r is the radius of the ball and circle is the center of mathematical ball,as the center and the radius of the sphere is to respectively.
The ball and sphere has not be maintained mathematical references as a solid references. A sphere of any radius is centered at the number of zero.
4 0
3 years ago
Other questions:
  • If I put one hand in hot tap water and the other in cold tap water then both in the same warm tap water what will happen
    14·1 answer
  • The radius of Venus (from the center to just above the atmosphere) is 6050 km (6050✕103 m), and its mass is 4.9✕1024 kg. An obje
    12·1 answer
  • What is the sl unit for momentum
    13·1 answer
  • Ask Your Teacher In a choir practice room, two parallel walls are 4.00 m apart. The singers stand against the north wall. The or
    8·1 answer
  • A 70-Ω electrical appliance and a 100-Ω electrical appliance are plugged into the outlets of a house. By what factor will the po
    8·1 answer
  • A 1.00 L flask is filled with 1.30 g of argon at 25 ∘C. A sample of ethane vapor is added to the same flask until the total pres
    8·1 answer
  • The dwarf planet Ceres contains over 50% of the mass of the main asteroid belt.
    10·1 answer
  • Under conditions of conservation of energy where the initial energy object is only gravitiational potential energy and the final
    9·1 answer
  • Which actions are essential to active participation? Check all that apply.
    6·2 answers
  • car driving on a circular test track shows a constant speedometer reading of 100 kph for one lap. a. Describe the car's speed du
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!