The answer is 10.5 kg m/s
Impulse (I) is the multiplication of force (F) and time interval (Δt): I = F · Δt
Force (F) is the multiplication of mass (m) and acceleration (a): F = m · a
Acceleration (a) can be expressed as change in velocity (v) divided by time interval (Δt): a = Δv/Δt
So:
a = Δv/Δt ⇒ F = m · a = m · Δv/Δt
F = m · Δv/Δt ⇒ I = m · Δv/Δt · Δt
Since Δt can be cancelled out, impulse can be expressed as:
I = m · Δv = m · (v2 - v1)
It is given:
m = 1.5 kg
v1 = 15 m/s
v2 = 22 m/s
I = 1.5 · (22 - 15) = 1.5 · 7 = 10.5 kgm/s.
W=MG
w is weight
m is mass
g is gravity
W=(100 kg)(9.8 m/s)
W= 980 N
hope this helps
They would be likely to be underweight. This is because the role of villi is to increase absorption of soluble molecules, they do this by increasing surface area for absorption to occur across.
If the person has less villi than normal in their small intestine, then the surface area will not be as large meaning there is less area for absorption to occur across so less soluble molecules will be absorbed.
Answer:
SI=
How far d does the person travel during the collision if the car was initially moving forward at 4.50 km/h ?
d=