Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
t=(0-(250sin75)^2)/-9.8
<span>the distance one is (2500+610)- (250m/s*cos75)*t=Dh Dh=horizontal distance </span>
<span>the max height one is d=0.5*9.8*t^2 </span>
<span>d= max height subtract 1800-d</span>
Discrete systems are those systems in which are made up of finite component particles a which are non-homogeneously arranged such that no smooth variation exists. It is such that all constituent particles have properties which vary randomly. They are direct opposite to continuous systems, which are smooth arrangement of particles which cannot be individually taken into consideration.
Was this answer helpful
Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at
![15^{\circ}](https://tex.z-dn.net/?f=15%5E%7B%5Ccirc%7D)
is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Answer:
C
Explanation:
A and B are not true and D is a disadvantage
Answer:
D
friction acts in the opposite direction of motion but does not affect the motion of the object