A particle with charge -40.0nC is on the x axis at the point with coordinate x=0 . A second particle, with charge -20.0 nC, is on the x axis at x=0.500 m.
No, there is no point at a finite distance where the electric potential is zero.
Hence, Option D) is correct.
What is electric potential?
Electric potential is the capacity for doing work. In the electrical case, a charge will exert a force on some other charge and the potential energy arises. For example, if a positive charge Q is fixed at some point in space, any other positive charge when brought close to it will experience a repulsive force and will therefore have potential energy.
It is also defined as the amount of work required to move a unit charge from a reference point to a specific point against an electric field.
To learn more about electric potential, refer to:
brainly.com/question/15764612
#SPJ4
Answer:
The RMS voltage across the resistor = 28 V
Explanation:
Capacitor: A capacitor is an electrical device that has the ability to store electrical charges in an electrical circuit. It is expressed in Farad (F)
Resistor: A resistor is an electrical device that oppose the flow of electric current in a circuit. It is expressed in ohms (Ω)
RMS Voltage : RMS voltage value of an alternating voltage is defined as that value of steady voltage which would dissipate heat at the same rate in a given resistance
Since the it is a series circuit, the total voltage is divided across the resistance and the capacitor.
Vt = V₁ + V₂...........................Equation 1
Where Vt = total Rms voltage = 120 V , V₁ = Rms voltage across the Capacitor = 92 V, V₂ = Rms voltage across the resistor.
Making V₂ the subject of the equation in equation 1 above,
V₂ = Vt - V₁ = 120 - 92
V₂ = 28 V.
The RMS voltage across the resistor = 28 V
Answer:
The boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Explanation:
Given the data in the question;
Using the Clapeyron equation
![(\frac{dP}{dT} )_{sat } = \frac{h_{fg}}{Tv_{fg}}](https://tex.z-dn.net/?f=%28%5Cfrac%7BdP%7D%7BdT%7D%20%29_%7Bsat%20%7D%20%3D%20%5Cfrac%7Bh_%7Bfg%7D%7D%7BTv_%7Bfg%7D%7D)
![(\frac{dP}{dT} )_{sat } = \frac{\frac{H_{fg}}{m} }{T\frac{V_{fg}}{m} }](https://tex.z-dn.net/?f=%28%5Cfrac%7BdP%7D%7BdT%7D%20%29_%7Bsat%20%7D%20%3D%20%5Cfrac%7B%5Cfrac%7BH_%7Bfg%7D%7D%7Bm%7D%20%7D%7BT%5Cfrac%7BV_%7Bfg%7D%7D%7Bm%7D%20%7D)
where
is the change in enthalpy of saturated vapor to saturated liquid ( 250 Btu
T is the temperature ( 15 + 460 )R
m is the mass of water ( 0.5 Ibm )
is specific volume ( 1.5 ft³ )
we substitute
/
272.98 Ibf-ft²/R
Now,
![(\frac{P_2 - P_1}{T_2 - T_1})_{sat](https://tex.z-dn.net/?f=%28%5Cfrac%7BP_2%20-%20P_1%7D%7BT_2%20-%20T_1%7D%29_%7Bsat)
where P₁ is the initial pressure ( 50 psia )
P₂ is the final pressure ( 60 psia )
T₁ is the initial temperature ( 15 + 460 )R
T₂ is the final temperature = ?
we substitute;
![= ( 15 + 460 ) + \frac{(60-50)psia(\frac{144in^2}{ft^2}) }{272.98}](https://tex.z-dn.net/?f=%3D%20%28%2015%20%2B%20460%20%29%20%2B%20%5Cfrac%7B%2860-50%29psia%28%5Cfrac%7B144in%5E2%7D%7Bft%5E2%7D%29%20%7D%7B272.98%7D)
![T_2 = 475 + 5.2751\\](https://tex.z-dn.net/?f=T_2%20%3D%20475%20%2B%205.2751%5C%5C)
480.275 R
Therefore, boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Answer:
6 voltage is applied by the batteries.
Explanation:
To solve this sort of problem involving current, resistance and voltage, we use the relation:<em> </em><em>Voltage</em><em>= </em><em>Current x Resistance</em>.
From the problem, the following have been given:
Resistance= 2.4 ohms.
Current= 2.5 amps.
Required: Voltage?
Fix the values of current and resistance into the relation:
Voltage= <em>2.5 x 2.4</em>
=6 volts.