Shaking a phone cord, strumming a guitar string, playing a trumpet
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles
Answer:
Like you, like you
Like you, ooh
I found it hard to find someone like you
Like you, like you
Send your location, come through
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
Explanation:
D only..
A is pure compound
B is mixture of compound and element
C is mixture of compounds
D is mixture of elements
Answer is:<span>the yield is 50%.
</span>
Chemical reaction: C + O₂ → CO₂.
n(C) = 0.3 mol; amount of substance.
n(O₂) = 0.3 mol.
From chemical reaction: n(C) : n(CO₂) = 1 : 1.
n(CO₂) = 0.3 mol.
M(CO₂) = 44 g/mol; molar mass of caron(IV) oxide.
m(CO₂) = n(CO₂) · M(CO₂).
m(CO₂) =0.3 mol · 44 g/mol.
m(CO₂) = 13.2 g; mass of carbon(IV) oxide.
the yield = 6.6 g ÷ 13.2 g · 100%.
the yield = 50%.