Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
Average speed = (total distance covered) / (total time to cover the distance)
= (2,742 km) / (4.33 hours)
= (2,742 / 4.33) km/hr
= 633 km/hr (rounded)
Density = mass / volume
mass = 1.1 g
volume = length of side ^ 3 = [1.2 * 10^-5 km * 100000 cm/km]^3 = [1.2 cm]^3 = 1.728 cm^3
density = 1.1 g / 1.728 cm^3 = 0.64 g / cm^3
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.