1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
3 years ago
7

Which diagram best illustrates what happens when electromagnetic waves strike a reflective material? ANSWER: D

Physics
2 answers:
hodyreva [135]3 years ago
6 0
We have no way to tell whether the answer is really D,
because you haven't posted the choices, so we don't
know what ' D ' says.

I hope you were helpful to yourself.
guapka [62]3 years ago
4 0

Answer:

The answer is D

You might be interested in
Why is tungsten used as a filament in a bulb?
Viktor [21]

Answer:

because of tungsten's high melting point

Explanation:

7 0
3 years ago
What is the de Broglie wavelength for a proton with energy 50 keV? Due to the limitations of Canvas, please give the wavelength
ad-work [718]

Answer:

1.2826 x 10^-13 m

Explanation:

\lambda  = \frac{h}{\sqrt{2 m K}}

Here, k be the kinetic energy and m be the mass

K = 50 KeV = 50 x 1.6 x 10^-16 J = 80 x 10^-16 J

m = 1.67 x 10^-27 kg

\lambda  = \frac{6.63 \times  10^{-34}}{\sqrt{2 \times 1.67\times 10^{-27}\times 80\times 10^{-16}}}

λ = 1.2826 x 10^-13 m

6 0
3 years ago
A plane travels 1743 KM in 2 hours 30 minutes. How fast was the plane traveling?
Advocard [28]

Answer:

v=697.2km/h

Explanation:

Hello.

In this case, since the velocity is computed via the division of the distance traveled by the elapsed time:

V=\frac{d}{t}

The distance is clearly 1743 km and the time is:

t=2h+30min*\frac{1h}{60min} =2.5h

Thus, the velocity turns out:

v=\frac{1743km}{2.5h}\\ \\v=697.2km/h

Which is a typical velocity for a plane to allow it be stable when flying.

Best regards.

5 0
3 years ago
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
(a) What is the ionization energy of a hydrogen atom that is in the n = 6 excited state? (b) For a hydrogen atom, determine the
crimeas [40]

Answer:

(a) 0.3778 eV

(b) Ratio = 0.0278

Explanation:

The Bohr's formula for the calculation of the energy of the electron in nth orbit is:

E=\frac {-13.6}{n^2}\ eV

(a) The energy of the electron in n= 6 excited state is:

E=\frac {-13.6}{6^2}\ eV

E=-0.3778\ eV

Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV

(b) For first orbit energy is:

E=\frac {-13.6}{1^2}\ eV

E=-13.6\ eV

Ratio=\frac {E_6}{E_1}

Ratio=\frac {-0.3778}{-13.6}

Ratio = 0.0278

7 0
3 years ago
Other questions:
  • In what order do the effort, fulcrum, and resistance appear on a second class lever?
    6·1 answer
  • What’s the physics symbol for this?
    6·1 answer
  • Science fair ideas??? please help
    7·2 answers
  • A 90kg man is standing still on frictionless ice. His friend tosses him a 10kg ball, which has a horizontal velocity of 20m/s. A
    5·2 answers
  • Which statement describes a property of a proton?
    14·1 answer
  • Which best illustrates projectile motion
    12·2 answers
  • Help me fast!!!
    11·2 answers
  • Which type of air mass forms over the ocean near the equator?
    9·2 answers
  • Which type of mirror causes beams of light to spread apart?.
    10·1 answer
  • 1- A student has a can of oil. which quantity can be measured using only a measuring cylinder?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!