Answer:
0.2 m/s^2
Explanation:
initial speed 14m/s
final speed 20m/s
acceleration:
(20m/s - 14m /s) /30s = (6m/s)/30s = 0.2 m/s^2
Answer:
0.1667 m/s
Explanation:
m1V1 + m2V2 = m1V3 + m2V4
0.01 = ( 0.0075) + (0.015 * V4)
V4 = (0.01 - 0.0075) / (0.015)
V4= 0.1667
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Answer:
The amount of time for the whole journey is 8 hours.
Explanation:
A truck covered 2/7 of a journey at an average speed of 40 mph. Representing 1 the total of the trip traveled, then the rest of the distance traveled is calculated as: 
So if the truck covered the remaining 200 miles at
, this means that
of the trip represents the 200 miles. So, to calculate the total distance traveled by the truck, you apply the following rule of three: if
of the route represents 200 miles, the integer 1 (which represents the total of the route), how many miles are they?

miles= 280
So the total distance traveled is 280 miles. Since speed is the relationship between the space traveled by an object and the time used for it (
), then if the average of the entire trip was 35 mph and the distance traveled 280 miles, the time is calculated as:

time= 8 h
<u><em>
The amount of time for the whole journey is 8 hours.</em></u>
<u><em /></u>