The answer for the following problem is mentioned below.
- <u><em>Therefore the time period is 0.02 seconds.</em></u>
Explanation:
Frequency:
The number of waves that pass a fixed place in a given amount of time. (or)
The number of waves that pas by per second.
The SI unit of the frequency is Hertz(Hz).
Time period:
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds. (s)
Given:
Frequency (f) = 39.5 Hz
To calculate:
Time period (T)
We know;
According to the problem;
From the problem;
<u>f = </u>
<u></u>
Where;
f represents the frequency
T represents the time period
f = 
f = 0.02 seconds
<u><em>Therefore the time period is 0.02 seconds.</em></u>
Answer:

Explanation:
The strength of the gravitational field at the surface of a planet is given by
(1)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
For the Earth:

For the unknown planet,

Substituting into the eq.(1), we find the gravitational acceleration of planet X relative to that of the Earth:

And substituting g = 9.8 m/s^2,

Answer:
C.) The slinky particles move up and down
Explanation:
<u>Transverse Wave</u>-
<em>A wave that has a disturbance perpendicular to the wave motion</em>
<em></em>
<em>Hello! This is the correct answer! Have a blessed day! :)</em>
<em>If you are in K12, please review the lesson! :) It will give you some very helpful definitions! I hope this helped!</em>
<u />
Answer:
Δt = 5.29 x 10⁻⁴ s = 0.529 ms
Explanation:
The simple formula of the distance covered in uniform motion can be used to find the interval between when the sound arrives at the right ear and the sound arrives at the left ear.

where,
Δt = required time interval = ?
Δs = distance between ears = 18 cm = 0.18 m
v = speed of sound = 340 m/s
Therefore,

<u>Δt = 5.29 x 10⁻⁴ s = 0.529 ms</u>