Answer : The volume of 3.0 M spinach solution added should be, 50 mL
Explanation :
Formula used :

where,
are the initial molarity and volume of spinach solution.
are the final molarity and volume of diluted spinach solution.
We are given:

Now put all the given values in above equation, we get:

Hence, the volume of 3.0 M spinach solution added should be, 50 mL
Answer : The final temperature of the mixture is 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


And as we know that,
Mass = Density × Volume
Thus, the formula becomes,

where,
= specific heat of ethanol = 
= specific heat of water = 
= mass of ethanol
= mass of water
= density of ethanol = 0.789 g/mL
= density of water = 1.0 g/mL
= volume of ethanol = 45.0 mL
= volume of water = 45.0 mL
= final temperature of mixture = ?
= initial temperature of ethanol = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 
Answer:
Explanation:(differences)SOLIDS have maximum intermolecular attraction and fixed shape so their particles are stable. LIQUIDS have small particles and are tightly held by molecular bond but not as tight as solid. liquid assume the shape of their container.GAS has free movement of particles...SIMILARITIES.. Liquid,solid and gases can be kept in containers...
0.0102 moles Na₂CO₃ = 1.08g of Na₂CO₃ is necessary to reach stoichiometric quantities with cacl2.
<h3>Explanation:</h3>
Based on the reaction
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
1 mole of CaCl₂ reacts per mole of Na₂CO₃
we have to calculate how many moles of CaCl2•2H2O are present in 1.50 g
- We must calculate the moles of CaCl2•2H2O using its molar mass (147.0146g/mol) in order to answer this issue.
- These moles, which are equal to moles of CaCl2 and moles of Na2CO3, are required to obtain stoichiometric amounts.
- Then, we must use the molar mass of Na2CO3 (105.99g/mol) to determine the mass:
<h3>
Moles CaCl₂.2H₂O:</h3>
1.50g * (1mol / 147.0146g) = 0.0102 moles CaCl₂.2H₂O = 0.0102moles CaCl₂
Moles Na₂CO₃:
0.0102 moles Na₂CO₃
Mass Na₂CO₃:
0.0102 moles * (105.99g / mol) = 1.08g of Na₂CO₃ are present
Therefore, we can conclude that 0.0102 moles Na₂CO₃ is necessary.to reach stoichiometric quantities with cacl2.
To learn more about stoichiometric quantities visit:
<h3>
brainly.com/question/28174111</h3>
#SPJ4
<u>Answer 2 :</u> The given electronic configuration for a neutral atom of phosphorous in its ground state is incorrect.
Explanation :
A neutral atom of phosphorous has 15 electrons.
The given electronic configuration is incorrect.
The reason is, According to Aufbau principle, the electrons will be first filled in the sub-shell having lower orbital energy. As from the given configuration, 3p sub-shell has lower orbital energy than 4s sub-shell. So, the electrons will be filled in 3p sub-shell first. Hence, the ground state electronic configuration of neutral atom of phosphorous is,

<u>Answer 3 :</u>
Element Rubidium Magnesium Aluminium
Symbol Rb Mg Al
Group number 1 2 13
Number of valence 1 2 3
electrons
The order of general reactivity on the basis of number of valence electrons.
Rb > Mg > Al
Reason : The reactivity is determined by the number of electrons present in the outermost shell that means the element which have 1 valence electron will be more reactive because they can easily lose electrons.