I cannot see your question to help you... sorry
The correct answer is C. An example of measurement bias in scientific
measurement, of the available answers, would be a balance that always
reads 0.1g. The other possible answers are all examples of devices or
measurement techniques that would help a scientist to avoid measurement
bias, rather than contributing to it.
Answer:
1.70
Explanation:
The molar mass of perchloric acid is 100.46 g/mol. The moles corresponding to 484 mg (0.484 g) are:
0.484 g × (1 mol/100.46 g) = 4.82 × 10⁻³ mol
4.82 × 10⁻³ moles are dissolved in 240 mL (0.240 L) of solution. The molar concentration of perchloric acid is:
4.82 × 10⁻³ mol/0.240 L = 0.0201 M
Perchloric acid is a strong monoprotic acid, that is, it dissociates completely, so [H⁺] = 0.0201 M.
The pH is:
pH = -log [H⁺] = -log 0.0201 = 1.70
Answer:
The percent by mass of copper in the mixture was 32%
Explanation:
The ammount of HNO₃ used is:
mol HNO₃ = volume * concentration
mol HNO₃ = 0.015 l * 15.8 mol/l
mol HNO₃ = 0.237 mol
According to the reaction, 4 mol HNO₃ will react with 1 mol Cu and produce 1 mol Cu²⁺. Since we have 0.237 mol HNO₃, the amount of Cu that could react would be (0.237 mol HNO₃ * 1 mol Cu / 4 mol HNO₃) 0.06 mol. This reaction would produce 0.060 mol Cu²⁺, however, only 0.010 mol Cu²⁺ were obtained, indicating that only 0.010 mol Cu were present in the mixture. This means that the acid was in excess, so we can assume that all copper present in the mixture has reacted.
Since 0.010 mol of Cu²⁺ were produced, the amount of Cu was 0.01 mol.
1 mol of Cu has a mass of 63.5 g, then 0.01 mol has a mass of:
0.01 mol Cu * 63.5 g / 1 mol = 0.635 g.
Since this amount was present in 2.00 g mixture, the amount of copper in 100 g of the mixture will be:
100 g(mixture) * 0.635 g Cu / 2 g(mixture) = 32 g
Then, the percent by mass of Cu (which is the mass of Cu in 100 g mixture) is 32%