Action-reaction forces<span> act on different objects; </span>balanced forces<span> act on the same object. </span>Balanced forces<span> can result in acceleration, </span>action-reaction forces<span> cannot. ... Newton's Third Law of Motion does not apply to </span>balanced forces<span>.</span>
Answer:
<em>The amount of electric charge transported = 0.192 C</em>
Explanation:
Electric Charge: This is defined as the product of electric current and time in an electric circuit, The S.I unit of electric charge is Coulombs (C)
Q = It..................... Equation 1
Where Q = Electric charge, I = electric current, t = time.
<em>Given:</em> I = 285 mA, t = 674 milliseconds.
<em>Conversion: (i) Convert from 285 mA to A = (285/1000) A = 0.285 A</em>
<em> (ii) convert from 674 milliseconds to seconds = (674/1000) s = 0.674 s </em>
Substituting these values into equation 1
Q = 0.285 × 0.674
<em>Q = 0.192 C</em>
<em>Therefore the amount of electric charge transported = 0.192 C</em>
<em></em>
<em></em>
Answer:
B
Explanation:
Density is about how closely compact molecules are. (^-^)
Answer:
Epithelial tissue and Muscle tissue
Explanation:
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s