1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlladinOne [14]
2 years ago
13

14. Which one of the following pictures shows the object that is the most dense? *

Physics
1 answer:
rewona [7]2 years ago
5 0

Answer:

B

Explanation:

Density is about how closely compact molecules are. (^-^)

You might be interested in
Which example provides the most complete description of an object's motion?
cupoosta [38]

Answer:

The hiker followed a road heading north for 2 miles in 30 minutes.

Explanation:

In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.

The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.  

Distance, d = 2 miles = 3218.6 m

times, t = 30 minutes = 1800 seconds

So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.

Hence, this is the required solution.

5 0
3 years ago
Read 2 more answers
A vocalist with a bass voice can sing as low as 92 Hz.
Inessa05 [86]

Answer:

  • 3.26 x 10 to the power of 6

Explanation:

c = lambda × frequency

5 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
You leave the doctor's office after your annual checkup and recall that you weighed 688 N in her office. You then get into an el
Lapatulllka [165]

Answer:

a=0.5418\ m.s^{-2} upwards

a=1.283\ m.s^{-2} downwards

Explanation:

Given:

weight of the person, w=688\ N

So, the mass of the person:

m=\frac{w}{g}

m=\frac{688}{9.81}

m=70.132\ kg

  • Now if the apparent weight in the elevator, w_a= 726\ N

<u>Then the difference between the two weights is :</u>

\Delta w=w_a-w

\Delta w=726-688

\Delta w=38\ N is the force that acts on the body which generates the acceleration.

Now the corresponding acceleration:

a=\frac{\Delta w}{m}

a=\frac{38}{70.132}

a=0.5418\ m.s^{-2} upwards, because the normal reaction that due to the weight of the body is increased here.

  • Now if the apparent weight in the elevator, w_a= 598\ N

<u>Then the difference between the two weights is :</u>

\Delta w=w-w_a

\Delta w=688-598

\Delta w=90\ N is the force that acts on the body which generates the acceleration.

Now the corresponding acceleration:

a=\frac{\Delta w}{m}

a=\frac{90}{70.132}

a=1.283\ m.s^{-2} downwards, because the normal reaction that due to the weight of the body is decreased here.

7 0
3 years ago
Read 2 more answers
A student attaches a block of mass M to a vertical spring so that the block-spring system will oscillate if the block-spring sys
Vlada [557]
WAAAAAAAAAAAAAAAAAAAAAAAAARRRRR
7 0
3 years ago
Other questions:
  • Can someone answer these?
    11·1 answer
  • Which of the following lists the typical steps of the scientific method in the
    5·1 answer
  • What is the current in the 10.0 , resistor?
    7·2 answers
  • Wind blows from what pressure to what pressure
    5·1 answer
  • What happens when a colder drier air mass pushes against a warmer moister air mass
    7·1 answer
  • Which statements accurately describe density? Check all that apply.
    13·1 answer
  • If you measure the amount of work accomplished in a particular time interval, u have measured-
    11·1 answer
  • What is the kinetic energy of a 30 kg falling object when the object reaches a velocity of 20 m/s?
    7·1 answer
  • Mindy places a strip of zinc in a copper sulfate solution, as shown in the
    12·2 answers
  • How did photosynthesis start?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!