1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dybincka [34]
3 years ago
11

A computer software update involved updating the flash memory of a hardware component. The update failed. A phone technician sai

d the component required replacement, but based on knowledge of how flash memory worked, the user suggested manually downloading the software, which worked.
A. True
B. False
Physics
1 answer:
Alexandra [31]3 years ago
3 0

Answer:

Yes, it's true. Computers do work that way. It's experienced by one of the authors of the book how computers work.

Explanation:

You might be interested in
Which statement is true of a glass lens that diverges light in air?
Arisa [49]
C it is uniformly thick
3 0
2 years ago
Read 2 more answers
An atom gains an additional electron. What is the overall charge of the ion that is formed?
jeka57 [31]

<em>An is formed when an atom loses or gains one or more electrons. Because the number of electrons in an ion is different from the number of protons, an ion does have an overall electric charge. Consider how a positive ion can form from an atom. The left side of the illustration below represents a sodium (Na) atom</em>

8 0
3 years ago
Read 2 more answers
Points A (-5,6), B (2,-2), and C (-6,-3) are placed in three different quadrants of a Cartesian coordinate system. Convert each
AURORKA [14]

Answer: A (\sqrt{61},309.8°)

              B (2\sqrt{2}, 315°)

             C (3\sqrt{5}, 26.56°)

Explanation: To transform rectangular coordinates into polar coordinates use:

r=\sqrt{x^{2}+y^{2}} and \theta=tan^{-1}(\frac{y}{x})

For point A:

r=\sqrt{(-5)^{2}+6^{2}}

r=\sqrt{61}

\theta=tan^{-1}(\frac{6}{-5})

\theta=tan^{-1}(-1.2)

\theta=-50.2°

Point A is in the II quadrant, so we substract the angle for 360° since it is in degrees:

\theta=360-50.2

\theta= 309.8°

Polar coordinates for point A is (\sqrt{61}, 309.8°)

For point B:

r=\sqrt{2^{2}+(-2)^{2}}

r=\sqrt{8}

r=2\sqrt{2}

\theta=tan^{-1}(\frac{-2}{2} )

\theta=tan^{-1}(1)

\theta=-45°

Point B is in IV quadrant, so:

\theta=360-45

\theta= 315°

Polar coordinates for point B is (2\sqrt{2}, 315°)

For point C:

r=\sqrt{(-6)^{2}+(-3)^{2}}

r=\sqrt{45}

r=3\sqrt{5}

\theta=tan^{-1}(\frac{-3}{-6} )

\theta=tan^{-1}(0.5)

\theta= 26.56°

Polar coordinates for point C is (3\sqrt{5}, 26.56°)

3 0
3 years ago
Which is a characteristic of projectile motion?A force can affect the _____ of an object.
Olin [163]

Answer:

mass of an object

Explanation:

because mass of an object changes it’s force

5 0
2 years ago
A particle with a mass of 0.500 kg is attached to a horizontal spring with a force constant of 50.0 N/m. At the moment t = 0, th
svp [43]

a) x(t)=2.0 sin (10 t) [m]

The equation which gives the position of a simple harmonic oscillator is:

x(t)= A sin (\omega t)

where

A is the amplitude

\omega=\sqrt{\frac{k}{m}} is the angular frequency, with k being the spring constant and m the mass

t is the time

Let's start by calculating the angular frequency:

\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{50.0 N/m}{0.500 kg}}=10 rad/s

The amplitude, A, can be found from the maximum velocity of the spring:

v_{max}=\omega A\\A=\frac{v_{max}}{\omega}=\frac{20.0 m/s}{10 rad/s}=2 m

So, the equation of motion is

x(t)= 2.0 sin (10 t) [m]

b)  t=0.10 s, t=0.52 s

The potential energy is given by:

U(x)=\frac{1}{2}kx^2

While the kinetic energy is given by:

K=\frac{1}{2}mv^2

The velocity as a function of time t is:

v(t)=v_{max} cos(\omega t)

The problem asks as the time t at which U=3K, so we have:

\frac{1}{2}kx^2 = \frac{3}{2}mv^2\\kx^2 = 3mv^2\\k (A sin (\omega t))^2 = 3m (\omega A cos(\omega t))^2\\(tan(\omega t))^2=\frac{3m\omega^2}{k}

However, \frac{m}{k}=\frac{1}{\omega^2}, so we have

(tan(\omega t))^2=\frac{3\omega^2}{\omega^2}=3\\tan(\omega t)=\pm \sqrt{3}\\

with two solutions:

\omega t= \frac{\pi}{3}\\t=\frac{\pi}{3\omega}=\frac{\pi}{3(10 rad/s)}=0.10 s

\omega t= \frac{5\pi}{3}\\t=\frac{5\pi}{3\omega}=\frac{5\pi}{3(10 rad/s)}=0.52 s

c) 3 seconds.

When x=0, the equation of motion is:

0=A sin (\omega t)

so, t=0.

When x=1.00 m, the equation of motion is:

1=A sin(\omega t)\\sin(\omega t)=\frac{1}{A}=\frac{1}{2}\\\omega t= 30\\t=\frac{30}{\omega}=\frac{30}{10 rad/s}=3 s

So, the time needed is 3 seconds.

d) 0.097 m

The period of the oscillator in this problem is:

T=\frac{2\pi}{\omega}=\frac{2\pi}{10 rad/s}=0.628 s

The period of a pendulum is:

T=2 \pi \sqrt{\frac{L}{g}}

where L is the length of the pendulum. By using T=0.628 s, we find

L=\frac{T^2g}{(2\pi)^2}=\frac{(0.628 s)^2(9.8 m/s^2)}{(2\pi)^2}=0.097 m






5 0
3 years ago
Other questions:
  • What is the difference between phylum and division
    10·1 answer
  • (Will give brainliest answer)
    7·2 answers
  • A can cause a driver to take risky chances or make bad choices
    5·1 answer
  • Two groups of scientists got different results while studying about the evolution of the universe. Which of these statements bes
    5·2 answers
  • What purpose does a female pine cone serve?
    9·2 answers
  • The acceleration due to gravity on the moon is 1.6 m/sec. what does a 10kg mass weigh on the moon
    7·1 answer
  • Please please help me :)
    14·1 answer
  • PLEASE HELP!! WILL GIVE POINTS
    12·1 answer
  • 1) La longitud del brazo de potencia de una palanca es de 0,0035 hectómetros y la del brazo de resistencia es de 55 centímetros.
    14·1 answer
  • 1.How many significant digits are in 101,407,063?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!