Ammonia is formed by a reaction between hydrogen and nitrogen as shown by the equation below.
N2(g) + 3H2(g) = 2NH3(g)
1 mole of ammonia contains 17 g
Therefore 10.78 g of ammonia are equivalent to 10.78/17 = 0.6341 moles
The mole ratio of hydrogen to ammonia is 3 : 2
Therefore, moles of hydrogen used will be 0.6341 × 3/2 = 0.9512 moles
1 mole of hydrogen is equivalent to 2 g
Thus, the mas of hydrogen will be 0.9512 moles × 2 = 1.9023 g
It will gain one electrons to form the fluorine ion
Answer:
Mass of KNO3 in the original mix is 146.954 g
Explanation:
mass of
in original 254.5 mixture.
moles of 
moles of
= 0.2926 mol of BaSO4
Therefore,
0.2926 mol of BaCl2,
mass of 
= 60.92 g
the AgCl moles 

= 1.3891 mol of AgCl
note that, the Cl- derive from both,
so
mole of Cl- f NaCl
mol of Cl-
mol of NaCl = 0.8039 moles

then
KNO3 mass = 254.5 - 60.92-46.626 = 146.954 g of KNO_3
Mass of KNO3 in the original mix is 146.954 g
PH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH) = 10^(-11.5) = 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
pH = 2.5 implies one significant digit