<h2>Answer:</h2><h3>The temperature of the gas: V</h3>
The temperature of gas is a variable quantity. It can be changed by changing energy or pressure of gas.
<h3>The amount of gas in the tube (in terms of mass and moles): C</h3>
It is a constant entity. As mass of gas once taken can not be changed by changing temperature, pressure etc.
<h3>The radius of the tube: C</h3>
The radius of tube cannot change at any rate.
<h3>The temperature of the gas (changed by the water surrounding it): V</h3>
It can be changed by changing the temperature of water surrounding it.
<h3>The type of gas: C</h3>
It can never be changed.
<h3>The pressure of the gas: V</h3>
It can be changed by simply changing temperature and volume of gas.
Answer:An iodide ion is the ion I−. Compounds with iodine in formal oxidation state −1 are called iodides. This page is for the iodide ion and its salts, not organo iodine compounds. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate.
brainliest pls
Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.
In order to calculate the enthalpy of the reaction, we first calculate the heat released using the given formula.
Q = mc<span>ΔT
Q = 1000 x 4.184 x (35.65 - 24.85)
Q = 45187.2 J = 45.2 kJ
Now, we determine the moles of methane that were burned.
Moles = mass / Mr
Moles = 1.11 / (12 + 4)
Moles = 0.07
The enthalpy of a reaction is the energy released per mole, so the enthalpy in this case is:
</span>ΔH = 45.2 / 0.07
ΔH = 645.7 kJ/mol
3 minutes read 1 page for 5 hours how many pages?