Answer:
5.3%
Explanation:
Let the volume be 1 L
volume , V = 1 L
use:
number of mol,
n = Molarity * Volume
= 0.8846*1
= 0.8846 mol
Molar mass of CH3COOH,
MM = 2*MM(C) + 4*MM(H) + 2*MM(O)
= 2*12.01 + 4*1.008 + 2*16.0
= 60.052 g/mol
use:
mass of CH3COOH,
m = number of mol * molar mass
= 0.8846 mol * 60.05 g/mol
= 53.12 g
volume of solution = 1 L = 1000 mL
density of solution = 1.00 g/mL
Use:
mass of solution = density * volume
= 1.00 g/mL * 1000 mL
= 1000 g
Now use:
mass % of acetic acid = mass of acetic acid * 100 / mass of solution
= 53.12 * 100 / 1000
= 5.312 %
≅ 5.3%
CrO and Cr₂O₃ make up the simplest chromium oxide formula.
What name does Cr₂O₃ use?
- Chromium oxide (Cr₂O₃)sometimes referred to as chromium sesquioxide or chromic oxide, is a compound in which chromium is oxidized to a +3 state. Sodium dichromate is calcined with either carbon or sulfur to produce it.
- Eskolaite, a mineral that bears the name of the Finnish geologist Pentti Eskola, is a kind of chromium oxide green that may be found in nature. The metallic glassy green surface of this unusual material has an unsettling moss-like look that may be used to conceal oneself in the environment.
- Studies on humans have conclusively shown that chromium (VI) breathed is a potential carcinogen, increasing the likelihood of developing lung cancer. According to animal studies, chromium (VI) exposure by inhalation can result in lung cancers.
Learn more about chromium here:
brainly.com/question/15588080
#SPJ4
Answer:
525.1 g of BaSO₄ are produced.
Explanation:
The reaction of precipitation is:
Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) ↓ + 2NaCl (aq)
Ratio is 1:1. So 1 mol of sodium sulfate can make precipitate 1 mol of barium sulfate.
The excersise determines that the excess is the BaCl₂.
After the reaction goes complete and, at 100 % yield reaction, 2.25 moles of BaSO₄ are produced.
We convert the moles to mass: 2.25 mol . 233.38 g/mol = 525.1 g
The precipitation's equilibrium is:
SO₄⁻² (aq) + Ba²⁺ (aq) ⇄ BaSO₄ (s) ↓ Kps
Answer:
a definite to indefinite
Explanation:
because if it is in liquid the volume is trusted,but if it is in gas the volume would have multiplied
i think u can pit it well
Answer:
a.) 22.4 L Ne.
Explanation:
It is known that every 1.0 mol of any gas occupies 22.4 L.
For the options:
<em>It represents </em><em>1.0 mol of Ne.</em>
<em />
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 20 L.
The no. of moles of (20 L) Ar = (1.0 mol)(20 L)/(22.4 L) = 0.8929 mol.
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 2.24 L.
<em>The no. of moles of (2.24 L) Xe </em>= (1.0 mol)(2.24 L)/(22.4 L) = <em>0.1 mol.</em>
- So, the gas that has the largest number of moles at STP is: a.) 22.4 L Ne.