1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
1 year ago
10

If m = 2,000, p = 2. 25, and y= 6,000, what is velocity?

Physics
1 answer:
Karo-lina-s [1.5K]1 year ago
6 0

The velocity is 6.75



The velocity in the equation stated above can be calculated as follows

m= 2,000
p= 2.25

y= 6000

velocity= 2.25 × 6000/ 2000
= 13500/2000
= 6.75


Hence the velocity is 6.75

Please see the link below for more information.
brainly.com/question/23547288?referrer=searchResults

You might be interested in
What measurements or observations tells you that a car is accelerating
lutik1710 [3]

You need to observe the car at two different times.

-- The first time: 
You write down the car's speed, and the direction it's pointing.

-- The second time:
You write down the car's speed and the direction it's pointing, again.

You take the data back to your lab to analyze it.

-- You compare the first and second speed. If they're different,
then the car had acceleration during the time between the two
observations.

-- You compare the first and second direction.  If those are different,
even if the speeds are the same, then the car had acceleration during
the time between the two observations.

(Remember, "acceleration" doesn't mean "speeding up". 
It means any change in speed or direction of motion.)
8 0
3 years ago
Read 2 more answers
A freight car moves along a frictionless level railroad track at constant speed. The freight car is open on the top. A large loa
Fittoniya [83]

The added weight of the sand puts more downward pressure on the wheels contacting the rails, which would cause the trains speed to decrease.

3 0
3 years ago
Two 0.20-kg balls, moving at 4 m/s east, strike a wall. Ball A bounces backwards at the same speed. Ball B stops. Which statemen
muminat

Answer:

Option A

Explanation:

From the question we are told that:

Mass m=0.20kg

Velocity v=4m/s

Generally the equation for momentum for Ball A is mathematically given by

Initial Momentum

 M_{a1}=mV

 M_{a1}=0.2*4

 M_{a1}=0.8

Final Momentum

 M_{a2}=-0.8kgm/s

Therefore

 \triangle M_a=-1.6kgm/s

Generally the equation for momentum for Ball B is mathematically given by

Initial Momentum

 M_{b1}=mV

 M_{b1}=0.2*4

 M_{b1}=0.8

Final Momentum

 M_{b2}=-0 kgm/s

Therefore

 |\triangle M_a|>|\triangle Mb|

Option A

4 0
3 years ago
In midair an M = 145 kg bomb explodes into two pieces of m1 = 115 kg and another, respectively. Before the explosion, the bomb w
Daniel [21]

Answer:

v_2=-133.17m/s, the minus meaning west.

Explanation:

We know that linear momentum must be conserved, so it will be the same before (p_i) and after (p_f) the explosion. We will take the east direction as positive.

Before the explosion we have p_i=m_iv_i=Mv_i.

After the explosion we have pieces 1 and 2, so p_f=m_1v_1+m_2v_2.

These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.

Since we know momentum must be conserved we have:

Mv_i=m_1v_1+m_2v_2

Which means (since we want v_2 and M=m_1+m_2):

v_2=\frac{Mv_i-m_1v_1}{m_2}=\frac{Mv_i-m_1v_1}{M-m_1}

So for our values we have:

v_2=\frac{(145kg)(24m/s)-(115kg)(65m/s)}{(145kg-115kg)}=-133.17m/s

5 0
2 years ago
The parachute on a drag racing car deploys at the end of a run. If the car has a mass of 820 kg and the car is moving 36 m/s, wh
Lelechka [254]

In order to determine the required force to stop the car, proceed as follow:

Calculate the deceleration of the car, by using the following formula:

v^2=v^2_o-2ax

where,

v: final speed = 0m/s (the car stops)

vo: initial speed = 36m/s

x: distance traveled = 980m

a: deceleration of the car= ?

Solve the equation above for a, replace the values of the other parameters and simplify:

\begin{gathered} a=\frac{v^2_o-v^2}{2x} \\ a=\frac{(36\frac{m}{s})^2-(0\frac{m}{s})^2}{2(980m)}=0.66\frac{m}{s^2} \end{gathered}

Next, consider that the formula for the force is:

F=ma

where,

m: mass of the car = 820 kg

a: deceleration of the car = 0.66m/s^2

Replace the previous values and simplify:

F=(820kg)(0.66\frac{m}{s^2})=542.20N

Hence, the required force to stop the car is 542.20N

4 0
1 year ago
Other questions:
  • How much clothes should be applied on 100 cm² area using pressure of 25 Pa
    5·1 answer
  • Is metal denting a physical change
    15·1 answer
  • 7. Which of the following statements concerning a short in a series circuit is true?
    12·1 answer
  • A 50 wt% ni–50 wt% cu alloy is slowly cooled from 1400°c to 1200°c:
    14·1 answer
  • Suppose that during a test drive of two​ cars, one car travels 224 miles in the same time that a second car travels 160 miles. I
    5·1 answer
  • g beats can be heard when Question 5 options: when sound waves interfere constructively when sound waves of same frequency inter
    9·1 answer
  • g suppose a spring with spring constant of 50 N/m is hanging from the ceiling. You hang 2.0 kg mass from the spring. How far is
    9·1 answer
  • Silicon (chemical symbol Si) is located in Group 14, Period 3. Which is silicon
    14·1 answer
  • Please just give me an answer, thanks.
    15·1 answer
  • A circuit is constructed with six resistors and two batteries as shown. The battery voltages are V1 = 18 V and V2 = 12 V. The po
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!