1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
3 years ago
14

What type of energy transformation is taking place when natural gas is used to heat water

Physics
1 answer:
bazaltina [42]3 years ago
3 0
Thermal energy transformation is taking place.
You might be interested in
Galileo was a contemporary of
Vitek1552 [10]
Brahe & Kepler

Answer from Quizlet
5 0
3 years ago
A sound signal traveling underwater has a frequency of 230 hertz. The speed of sound under water is 1. 45 × 103 meters/second. W
nirvana33 [79]

Answer:

A.6.3

Explanation:

4 0
3 years ago
2. Vehicle-braking distance is the distance your vehicle travels after you see a problem
babunello [35]
The answer is B. False
8 0
3 years ago
Read 2 more answers
Benny wants to estimate the mean lifetime of Energizer batteries, with a confidence level of 97%, and with a margin of error not
VikaD [51]

Answer:

143 batteries does Benny need to sample

Explanation:

Given data

confidence level = 97%

error  = ±10 hours

standard deviation SD = 55 hours

to find out

how many batteries does Benny need to sample

solution

confidence level is 97%

so a will be 1 - 0.97 = 0.03

the value of Z will be for a 0.03 is 2.17 from standard table

so now we calculate no of sample i.e

no of sample  = (Z× SD/ error)²

no of sample = (2.16 × 55 / 10)²

no of sample = 142.44

so  143 batteries does Benny need to sample

7 0
3 years ago
A rotating object has an angular acceleration of α = 0 rad/s2. Which one or more of the following three statements is consistent
Murrr4er [49]

Answer:

A,B and C

Explanation:

Statement A  

At all times, angular velocity is \omega = 0\,{\rm{rad/s}  

Angular acceleration is the rate of change in angular velocity with respect to time.  

Angular velocity and angular acceleration are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

Which when re-arranged becomes  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

There’s no change in angular velocity anytime when the angular velocity is \omega = 0\,{\rm{rad/s}}

The equation can be modified as follows:  

\begin{array}{c}\\\alpha = \frac{{0\,{\rm{rad/s}} - 0\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero hence statement A is valid.  

Statement B  

Angular acceleration is the rate of change in angular velocity with respect to time.  

Angular velocity and angular acceleration are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

Which when re-arranged becomes  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

There’s no change in angular velocity anytime when the angular velocity is \omega = 10\,{\rm{rad/s}}.The final and initial velocities remain the same.  

The equation can be modified as follows:  

\begin{array}{c}\\\alpha = \frac{{10\,{\rm{rad/s}} - 10\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero and statement B is valid  

Statement C  

Angular velocity is defined as the change in the angular position with respect to time.  

Angular velocity and angular displacement are related by  

\theta = \omega t

Which can also be modified as:  

{\theta _{\rm{f}}} - {\theta _{\rm{i}}}

Note that the final position is {\theta _{\rm{f}}}and initial position is {\theta _{\rm{i}}}

Modifying the equation to find the angular velocity we obtain  

\omega = \frac{{{\theta _{\rm{f}}} - {\theta _{\rm{i}}}}}{t}

When the angular displacement has the same value at all times, the equation becomes  

\begin{array}{c}\\\omega = \frac{{{\theta _{\rm{i}}} - {\theta _{\rm{i}}}}}{t}\\\\ = 0\\\end{array}

The angular velocity becomes zero.  

Angular acceleration and angular velocity are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

The expression above can be rearranged as follows:  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

At all times, the angular velocity is \omega = 0\,{\rm{rad/s}} hence initial and final velocities remain the same  

We obtain  

\begin{array}{c}\\\alpha = \frac{{0\,{\rm{rad/s}} - 0\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero and statement C is valid.  

Therefore, statements A,B and C are consistent .

4 0
4 years ago
Other questions:
  • The inner and outer surfaces of a 5m x 6m brick wall of thickness 30 cm and thermal conductivity 0.69 w/m.0 c are maintained at
    7·1 answer
  • A lightbulb is rated by the power that it dissipates when connected to a given voltage. For a lightbulb connected to 120 V house
    14·1 answer
  • What is the equation for calculating the heat energy released during heating effect of electric current?
    11·2 answers
  • (20 POINTS!!) If newton's 1st law of motion did not exist, WHY would objects start to move by themselves? Explain please!
    10·1 answer
  • 3. The figure below shows the motion of a car. It starts from the origin, O travels 8m
    9·1 answer
  • How can you say that joule and Newton are derived units​
    7·1 answer
  • 14. Do loud sounds travel faster than soft sounds? Why or why not?
    10·2 answers
  • You go outside on a bright, warm day, How can you tell that you are absorbing radiant energy from the sun?
    9·1 answer
  • For brainliest and 100 points
    13·2 answers
  • In its own reference frame, a box has the shape of a cube 1.5 m on a side. This box is loaded onto the flat floor of a spaceship
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!