Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =

- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.

Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.

Explanation:
Mass of baseball, m = 0.148 kg
Initial speed of the ball, u = 14.5 m/s
Final speed of the ball, v = 11.5 m/s
After crashing through the pane of a second-floor window, the ball shatters the glass as it passes through, and leaves the window at 11.5 m/s with no change of direction. So, the direction of the impulse that the glass imparts to the baseball is in opposite direction to the direction of the balls path.
The change in momentum of the ball is called impulse. It is given by :

Hence, this is the required solution.
This behavior helps Betty in <u>intellectual </u>development.
The S strain Pneumococcus bacteria had a smooth surface because IT IS SURROUNDED BY A CARBOHYDRATE CAPSULE CALLED THE S STRAIN. The other form, the R strain has a rough surface and no capsule. It is only the S strain that exhibits virulence.
Answer:
r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed.
Explanation:
Efficiency is often measured as the ratio of useful output to total input, which can be expressed with the mathematical formula r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed.