Answer:
y = 43.55 + 2.15t
Explanation:
We were told that in 1983, the per capita consumption was 37.1 pounds, and in 1989 it was 50 pounds.
If we assume t = 0 corresponds to year 1980. Then, for 1983 it will be t = 3 and for 1989,it will be t = 9.
Thus, expressing the information as ordered pairs, we have; (3,37. 1) and (9,50).
Let us now find slope of the linear function:
m1 = (y2 - y1)/(t2 - t1)
m1 = (50 - 37.1)/(9 - 3)
m1 = 2.15
So, we can find the linear equation as;
y - 37.1 = 2.15(t - 3)
y = 37.1 + 2.15t - 6.45
y = 43.55 + 2.15t
Explanation:
- Speed is the rate of change of distance with time.
Speed = 
- Velocity is given as the displacement per unit of time:
Velocity = 
Speed and velocity are similar but speed is a scalar quantity while velocity is a vector quantity. Speed has magnitude but does not point towards a specific direction. Velocity shows both magnitude and direction and it is a vector quantity.
- Acceleration is given as the change in velocity with time. It is a vector quantity:
Acceleration = 
- Distance is how far a body moves. It is scalar quantity.
- Time is the duration of an event. It is a scalar quantity.
Learn more:
Vector calculation brainly.com/question/2678571
#learnwithBrainly
The correct answer is A.
The coefficient of absorption of material A is 30%. So, the material will absorb 30% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 70% energy.
The coefficient of absorption of material B is 47%. So, the material will absorb 47% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 53% energy.
The coefficient of absorption of material C is 62%. So, the material will absorb 62% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 28% energy.
Hence, material C would be the best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
Answer:The note about infinite reach belongs in region Y.
Explanation: