Answer:he formula for average speed is (total distance/total time)
the y-component does not matter in this problem. so do 6.26(cos45)=4.43m/s to find the x-component velocity which is constant throughout the duration of the flight. the total distance is 2L because he travels distance L twice.
the total time is ((time in water)+(time out of water)) since you dont have time you must eliminate it. to do this you need (distance)/(time)=velocity
solve for time and you get T=D/V
time in water is L/3.52 and time out of water is L/4.43
add them together and you get (4.43L+3.52L)/(15.59) = 7.95L/15.59
that value is your total time
divide you total distance (2L) by total time (7.95L/15.59) and the Ls cancel out and you get
(31.18)/(7.95) = 3.92 m/s = Average Speed
Explanation:
The set of all sets that are not members of themselves. This contradiction is Russell's paradox.
Answer:
h = 1.02 m
Explanation:
This is a fluid mechanics exercise, where the pressure is given by
P =
+ ρ g h
The gauge pressure is
P -
= ρ g h
In this case the upper part of the tube we have the atmospheric pressure. and the diver can exert a pressure 10 KPa below the outside pressure, this must be the gauge pressure
= P - 
= ρ g h
h =
/ ρ g
calculate
h = 10 103 / (1000 9.8)
h = 1.02 m
This is the depth at which man can breathe
Answer:
<h3>The answer is option B</h3>
Explanation:
The frequency of a wave can be found by using the formula

where
c is the velocity
From the question
wavelength = 0.39 m
c = 86 m/s
We have

We have the final answer as
<h3>200 Hz</h3>
Hope this helps you
Answer:D
Explanation:according to the law of conservation of energy/momentum, when two bodies collides, their total momentum and energy before and after collision are equal. Given that the two bodies move with the same velocities after collision, means that the law has not been violated since momentum = mass x velocity (where mass is constant)