<h3><u>Answer;</u></h3>
The period of the wave is <u><em>4 seconds</em></u>
<h3>
<em><u>Explanation;</u></em></h3>
- <em><u>The period of a wave or periodic time is the time taken for one complete oscillation to occur.</u></em> In this case, one complete oscillation occurs when the wave moves from one crest to the next or a trough to the next. <em><u>This takes 4 seconds. Therefore the period is 4 seconds.</u></em>
- <em><u>Frequency on the other hand is the number of oscillations by a wave in one second. Thus, f = 1/T, that is frequency is the reciprocal of periodic time.</u></em>
Dx = 20m
V1 = 10m/s
g = 9.8m/s^2
(delta-t) = 2sec
dy = 19.6m
Let F be the magnitude of the frictional force. This force performs an amount of work W on the bullet such that
W = -Fx
where x is the distance over which F is acting. This is the only force acting on the bullet as it penetrates the tree. The work-energy theorem says the total work performed on a body is equal to the change in that body's kinetic energy, so we have
W = ∆K
-Fx = 0 - 1/2 mv²
where m is the body's mass and v is its speed.
Solve for F and plug in the given information:
F = mv²/(2x)
F = (0.00426 kg) (881 m/s)² / (2 (0.0444 m))
F = 37,234.8 N ≈ 37.2 kN
Answer:
11.28 N toward the center of the track
Explanation:
Centripetal force: This is the force that tend to draw a body close to the center of a circle, during circular motion.
The formula for centripetal force is given as,
F = mv²/r................................ Equation 1
Where F = force, m = mass of the toy car, v = velocity, r = radius
Given: m = 108 g = 0.108 kg, v = 7.75 m/s, r = 57.5 cm = 0.575 m
Substitute into equation 1
F = 0.108(7.75²)/0.575
F = 11.28 N
Hence the magnitude and direction of the force = 11.28 N toward the center of the track
It means the speed is constant with a value of 4 units.