Answer:
ok I guess we should I am not good I am mad so yeah
The steps to construct a regular hexagon inscribed in a circle using a compass and straightedge are given as follows:
1. <span>Construct a circle with its center at point H.
2. </span><span>Construct horizontal line l and point H on line l
3. </span>Label
the point of intersection of the circle and line l to the left of point
H, point J, and label the point of intersection of the circle and line l
to the right of point H, point K.<span>
4. Construct
a circle with its center at point J and having radius HJ .
Construct a circle with its center at point K having radius HJ
5. </span><span>Label
the point of intersection of circles H and J that lies above line l,
point M, and the point of their intersection that lies below line l,
point N. Label the point of intersection of circles H and K that lies
above line l, point O, and the point of their intersection that lies
below line l, point P.
6. </span><span>Construct and JM⎯⎯⎯⎯⎯, MO⎯⎯⎯⎯⎯⎯⎯, OK⎯⎯⎯⎯⎯⎯⎯, KP⎯⎯⎯⎯⎯, PN⎯⎯⎯⎯⎯⎯, and NJ⎯⎯⎯⎯⎯ to complete regular hexagon JMOKPN .</span>
Answer: the dwarf tree grew by 3 inches.
the semi dwarf tree grew by 6 inches.
the full size tree grew by 18 inches.
Step-by-step explanation:
Let x represent how much the semi-dwarf lemon tree grew.
Last month, a dwarf lemon tree grew half as much as a semi-dwarf lemon tree. This means that the amount by which the dwarf lemon tree grew is expressed as x/2
A full-size lemon tree grew three times as much as the semi-dwarf lemon. This means that the amount by which the full-size lemon tree grew is expressed as 3x
Together, the three trees grew 27 inches. This means that
x/2 + x + 3x = 27
Cross multiplying by 2, it becomes
x + 2x + 6x = 54
9x = 54
x = 54/9
x = 6 inches
The dwarf tree grew by 6/2 = 3 inches.
The full-size lemon tree grew by 3 × 6 = 18 inches
Answer:
0.8213
Step-by-step explanation:
-This is a binomial probability problem given by the function:

Given that n=21 and p=0.2, the probability that she experience a delay on at least 3 days is calculated as:

Hence, the probability that she experience delay on at least 3 days is 0.8213