Answer:
C. Gamma > beta > alpha
Explanation:
<u>Alpha rays</u> : These are positively charged and have mass 4u. These contain high energy Helium nucleus with 2 proton and 2 neutron.
These are heavier and maximum charged than beta and gamma particles.They have low velocity,least penetration power (can't travel more than 10-18 cm).
<u>Beta rays</u> : They are negatively charged and have negligible mass.
On emmission of beta particle, neutron is divided into proton and electron. They have less mass and very high velocity, so their penetrating power is more than alpha particles.
<u>Gamma rays</u>: These are parts of electromagnetic spectrum and travel with the speed of light (maximum velocity).Gamma rays do not have mass have maximum penetrating power.
Answer:
Law of Conservation of Energy
Explanation:
Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
Answer:
kf = 1.16 x 10¹⁸
Explanation:
Step 1: [Ni(H₂O)₆]²⁺ + 1en → [Ni(H₂O)₄(en)]²⁺ ΔG°1 = -42.9 kJmol⁻¹
Step 2: [Ni(H₂O)₄(en)]²⁺ + 1en → [Ni(H₂O)₂(en)₂]²⁺ ΔG°2 = -35.8 kJmol⁻¹
Step 3: [Ni(H₂O)₂(en)₂]²⁺ + 1en → [Ni(en)₃]²⁺ ΔG°3 = -24.3 kJmol⁻¹
________________________________________________________
Overall reaction: [Ni(H₂O)₆]²⁺ + 3en → [Ni(en)₃]²⁺ ΔG°r
ΔG°r = ΔG°1 + ΔG°2 + ΔG°3
ΔG°r = -42.9 - 35.8 - 24.3
ΔG°r = -103.0 kJmol⁻¹
ΔG°r = -RTlnKf
-103,000 Jmol⁻¹ = - 8.31 J.K⁻¹mol⁻¹ x 298 K x lnKf
kf = e ^(-103,000/-8.31x298)
kf = e ^41.59
kf = 1.16 x 10¹⁸
Answer:
Nuclear Fission.
Explanation:
This happens when a high-energy particle collides with a radioisotope, which splits into 2 daughter nuclei, several neutrons (which can collide with more radioisotopes to cause a chain reaction); and a lot of energy. That's why nuclear power plants are so good.