1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
15

Which congruence theorem can be used to prove △WXZ ≅ △YZX?

Mathematics
2 answers:
Svetach [21]3 years ago
5 0
Hi there!
The congruency theorem that proves these two triangles congruent is AAS. This is because both triangles have two congruent angles and the side comes from the side that can be proved congruent in both triangles by the reflexive property.
Hope this helps!! :)If there's anything else that I can help you with, please let me know!

SCORPION-xisa [38]3 years ago
4 0

the correct answer is AAS

You might be interested in
Please help me to do this problem since I don't know how to do it. Please don't answer with links that don't work please this is
Ymorist [56]
Not sure what the photo is, can’t view it
8 0
2 years ago
Read 2 more answers
HELP ASAP True or False: The church was able to perform all of Palestrina’s masses.
jek_recluse [69]

Answer:

true

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
X -(2x- 3x-4/7) = 4x -27/3 -3​
RUDIKE [14]
RHS
=4x-27/0
=not defined=0

LHS
=x-2x+3x+4/7=2x+4/7=(14x+4)/7= 14x+4.

14x=-4

x=-4/14

X=-2/7
7 0
3 years ago
Read 2 more answers
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
I really need help and this not working
Nostrana [21]

Answer:

Help with what

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • Help TWT ;-;-;-;-;-;-;​
    15·2 answers
  • Ben drinks tea at an incredible rate. He drinks 3 1/2 liters of tea every 2/3 of an hour. Ben drinks tea at a constant rate. How
    5·2 answers
  • Which equations are correct
    14·1 answer
  • Please answer this simple question !!!
    12·1 answer
  • Juan entered a raffle at a festival and hopes to win a new TV. The odds in favor of winning a new TV are 17/5 . Find the probabi
    15·1 answer
  • Help me please, but dont answer if you dont know it
    11·2 answers
  • Determine the value of x.
    9·2 answers
  • Help please asap tysm! 10 brainly points! Will mark brainliest if you put in a random answer you will be reported! Tysm! &lt;3 N
    15·2 answers
  • What is the angle measure of an arc bounding sector with an area of 5pie square miles?
    7·1 answer
  • Write an inequality that means 2 times a number (d) plus 3 is less than or equal to 9.​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!