Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
The salesman is telling you the average magnitude of the car's acceleration.
| Acceleration | = (change in speed) / (time for the change)
| Acceleration | = (60 mi/hr) / (6 sec)
| Acceleration | = 10 miles/hr-sec
That would be 36,000 miles per hour squared,
or 0.0028 mile per second squared.
Answer: b
Explanation: did the quiz got it right
Answer:
If a negatively charged balloon is brought near one end of the rod but not in direct contact, then <u>the negative charges on the balloon repel the same amount of negative charges on the end of the rod that is close to the balloon</u>, and the positive charges stay at the balloon-side of the rod. The total charge of the rod is still zero, but the distribution of the charges are now non-uniform.
Explanation:
this is my answer this is helpful for you