Answer:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong):</em>
a) a×b = 34.27k
b) a·b = 128.43
c) (a + b)·b = 305.17
d) The component of a along the direction of b = 9.66
Explanation:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong)</em> we can proceed as follows:
a) The vectorial product, a×b is:

b) The escalar product a·b is:

c) <u>Asumming (a</u><u> </u><u>+ b)·b</u> <em>instead a+b·b</em> we have:
![(a + b)\cdot b = [(8.6 + 9.3)i + (5.1 + 9.5)j]\cdot (9.3i + 9.5j) = (17.9i + 14.6j)\cdot (9.3i + 9.5j) = 305.17](https://tex.z-dn.net/?f=%28a%20%2B%20b%29%5Ccdot%20b%20%3D%20%5B%288.6%20%2B%209.3%29i%20%2B%20%285.1%20%2B%209.5%29j%5D%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20%2817.9i%20%2B%2014.6j%29%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20305.17)
d) The component of a along the direction of b is:

I hope it helps you!
Answer:
,
, 
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%5Ccdot%20%5Cleft%5B%5Ccos%5Cleft%28%5Cfrac%7Bx%20%2B%202%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%20%2B%20i%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7Bx%2B2%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%5Cright%5D)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 1
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 2
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

Answer:
c
Explanation:
no te tengo porque darte explicaciones
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.