Answer:
Uh first of all this is algebra but I'll answer this
First distribute the three and 5 (Multiply them by both terms inside parenthesis.
3x-6=5x+20
Then add like terms
8x=14
Divide 8 by 8 and 8 by 14
x = 14/8
Explanation:
Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Commonly, sacrificial electrodes are employed to stop another metal from corroding or oxidising. A metal that is more reactive than the metal being shielded must serve as the sacrificial electrode. Magnesium, aluminium, and zinc are the three metals most frequently used in sacrificial anodes.
Manganese-Magnesium (Mn-Mg) electrode is more suited for on-shore pipelines where the electrolyte (soil or water) resistivity is higher since it has the highest negative electropotential of the three. In order to replenish any electrons that could have been lost during the oxidation of the shielded metal, the highly active metal offers its electrons.
Therefore, Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Learn more about electrode here:
brainly.com/question/17060277
#SPJ4
Answer:
25.8
Explanation:
Let's write the reaction between magnesium-phosphide and potassium:
Mg3P2 + K = Mg + K3P
And now let's balance this equation:
Mg3P2+6K=3Mg+2K3P
We see that the ratio of magnesium-phosphide and potassium is 1:6, which means that for every mole of magnesium-phosphide there need to be 6 moles of potassium.
Since we have 4.3 moles of Mg3P2, there need to be 6 • 4.3 = 25.8 moles of potassium.
Answer:
<em>17500 calories</em> of chocolate bars are needed to eat to gain 5 pounds.
Explanation:
We can use ratios to calculate the answer using the information given in the question.
1 pound : 3500 grams
5 pounds : x grams
As it is given that the individual is burning no calories, we do not have to factor in any additional numbers.
<u><em>Method</em><em> </em><em>A</em><em>:</em></u>
To go from 1 in the first ratio to 5 in the second ratio, they multipled 1 by 5. Hence, to go from 3500 in the first ratio to x in the second ratio, we must multiply by 5.
x = 3500 × 5
x = 17500
<em><u>Method B</u>:</em>
To solve for the answer x, we can convert the ratios into fractions.
1 / 5 = 3500 / x
3500 / x = 1 / 5
To make x the subject, multiply the denominator of the left fraction with the numerator of the right fraction and place it on the left side. Then multiply the numerator of the left fraction with the denominator of the right fraction and place it on the right side.
x = 5 × 3500
x = 17500
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J