Answer: If the object is at equilibrium, then the net force acting upon the object should be 0 Newton. Thus, if all the forces are added together as vectors, then the resultant force (the vector sum) should be 0 Newton.
Magnitude: 3.4 N
Direction: 161 deg
HOPE THIS HELPS
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
The effect of a change in the price of a new pair of headphones on the equilibrium price of replacement tips ( dp/dpN) is

b
The value of Q and p at equilibruim is
and
5
The consumer surplus is 
The producer surplus is 
Explanation:
From the question we are told that
The inverse market demand is 
The inverse supply function is 
a
The effect of change in the price is mathematically given as

Now differntiating the inverse market demand function with respect to 
We get that

b
We are told that
$30
Therefore the inverse market demand becomes

At equilibrium

So we have

Where
is the quantity at equilibrium



Substituting the value of Q into the equation for the inverse market demand function

5
Looking at the equation for
we see that
For Q = 0


And for Q = 250


Hence the consumer surplus is mathematically evaluated as

Substituting value


And
The producer surplus is mathematically evaluated as


Answer:
P₁- P₂ = 91.1 10³ Pa
Explanation:
For this exercise we will use Bernoulli's equation, where point 1 is at the bottom of the house and point 2 on the second floor
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
P1-P2 = ½ ρ (v₂² - v₁²) + ρ g (y₂-y₁)
In the exercise they give us the speeds and the height of the turbid, so we can calculate the pressure difference
For heights let's set a reference system on the ground floor of the house, so we have 5m for the second floor and an entrance at -2m
P₁-P₂ = ½ 1.0 10³ (7² - 2²) + 1.0 10³ 9.8 (5 + 2)
P₁-P₂ = 22.5 10³ + 68.6 10³
P₁- P₂ = 91.1 10³ Pa
Answer:
60 Ω
Explanation:
R(com) = 15 Ω
1/R(com) = 1/R1 + 1/R2 + 1/R3 ..... + 1/Rn
1/15 = 1/20 + 1/R2
1/R2 = 1/15 - 1/20
1/R2 = (4 - 3) / 60
1/R2 = 1/60
R2 = 60 Ω
así, la combinada de resistencia necesaria es 60 Ω