Answer:
Explanation:
Given
mass of lead piece 
mass of water in calorimeter 
Initial temperature of water 
Initial temperature of lead piece 
we know heat capacity of lead and water are
and
respectively
Let us take
be the final temperature of the system
Conserving energy
heat lost by lead=heat gained by water





<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>
Answer:
Distance from start point is 72.5km
Explanation:
The attached Figure shows the plane trajectories from start point (0,0) to (x1,y1) (d1=40km), then going from (x1,y1) to (x2,y2) (d2=56km), then from (x2,y2) to (x3,y3) (d3=100). Taking into account the angles and triangles formed (shown in the Figure), it can be said:

Using the Pitagoras theorem, the distance from (x3,y3) to the start point can be calculated as:

Replacing the given values in the equations, the distance is calculated.
Copper is the second best known electrical conducting substance. The first best one is silver. We almost always use copper because silver costs too much.