1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
2 years ago
14

A sports car accelerates from rest for 5 seconds reaching a velocity of 23.0 m/s.

Physics
1 answer:
denis-greek [22]2 years ago
4 0

Answer:

<h2>4.6 m/s²</h2>

Explanation:

The acceleration of an object given it's velocity and time taken can be found by using the formula

<h3>a =  \frac{v - u}{t}  \\</h3>

where

v is the final velocity

u is the initial velocity

t is the time taken

a is the acceleration

Since the body is from rest u = 0

From the question we have

a =  \frac{23 - 0}{5}  =  \frac{23}{5}  \\

We have the final answer as

<h3>4.6 m/s²</h3>

Hope this helps you

You might be interested in
What do all wetlands have in common?
Ksivusya [100]
They are all coverd in water 24/7 they never clear up
4 0
3 years ago
Read 2 more answers
A 4-lb ball b is traveling around in a circle of radius r1 = 3 ft with a speed (vb)1 = 6 ft&gt;s. if the attached cord is pulled
Leya [2.2K]
Position #1:
radius, r₁ = 3 ft
Tangential speed, v₁ = 6 ft/s

By definition, the angular speed is
ω₁ = v₁/r₁ = (3 ft/s) / (3 ft) = 1 rad/s

Position #2:
Radius, r₂ = 2 ft

By definition, the moment of inertia in positions 1 and 2 are respectively
I₁ = (4 lb)*(3 ft)² = 36 lb-ft²
I₂ = (4 lb)*(2 ft)² = 16 lb-ft²

Because momentum is conserved,
I₁ω₁ = I₂ω₂
Therefore the angular velocity in position 2 is
ω₂ = (I₁/I₂)ω₁
      = (36/16)*1 = 2.25 rad/s
The tangential velocity in position 2 is
v₂ = r₂ω₂ = (2 ft)*(225 rad/s) = 4.5 ft/s

At each position, there is an outward centripetal force.
In position 1, the centripetal force is
F₁ = m*(v²/r₂) = (4)*(6²/3) = 48 lbf
In position 2, the centripetal force is
F₂ = (4)*(4.5²/2) = 40.5 lbf

The radius diminishes at a rate of 2 ft/s.
Therefore the force versus distance curve is as shown below.

The work done is the area under the curve, and it is
W = (1/2)*(48.0+40.5 ft)*(3-2 ft) = 44.25 ft-lb

Answer:  44.25 ft-lb


6 0
3 years ago
An initially stationary object experiences an acceleration of 6 m/s2 for a time of 15 s. How far will it travel during that time
andrew-mc [135]

Answer:

The object will travel 675 m during that time.

Explanation:

A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.

In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.

In this case, the position is calculated using the expression:

x = xo + vo*t + ½*a*t²

where:

  • x0 is the initial position.
  • v0 is the initial velocity.
  • a is the acceleration.
  • t is the time interval in which the motion is studied.

In this case:

  • x0= 0
  • v0= 0  because the object is initially stationary
  • a= 6 \frac{m}{s^{2} }
  • t= 15 s

Replacing:

x= 0 + 0*15 s + ½*6 \frac{m}{s^{2} }*(15s)²

Solving:

x=½*6 \frac{m}{s^{2} }*(15s)²

x=½*6 \frac{m}{s^{2} }*225 s²

x= 675 m

<u><em> The object will travel 675 m during that time.</em></u>

5 0
3 years ago
The distance from Abdullah's house to his school is 2.4km. Abdulla takes 0.6h to go to school on his cycle but takes only 0.4h t
vladimir1956 [14]

Answer:

The average speed can be calculated as the quotient between the distance travelled and the time needed to travel that distance.

To go to the school, he travels 2.4 km in 0.6 hours, then here the average speed is:

s = (2.4km)/(0.6 hours) = 4 km/h

To return to his home, he travels 2.4km again, this time in only 0.4 hours, then here the average speed is:

s' = (2.4 km)/(0.4 hours) = 6 km/h.

Now, if we want the total average speed (of going and returning) we have that the total distance traveled is two times the distance between his home and school, and the total time is 0.6 hours plus 0.4 hours, then the average speed is:

S = (2*2.4 km)/(0.6 hours + 0.4 hours)

S = (4.8km)/(1 h) = 4.8 km/h

5 0
2 years ago
Suppose that a constant force is applied to an object. Newton's Second Law of Motion states that the acceleration of the object
omeli [17]
<span>(9 kg)(5 m/s^2) = M(3 m/s^2) 
</span><span>that the acceleration of the object varies inversely with its mass.</span>
4 0
3 years ago
Other questions:
  • A metal ball of mass 100 g is heated to 90°C and then cooled to 25°C. The heat lost in the process is 2.5 kJ. Another metal ball
    15·2 answers
  • Gravity is dependent on which of the two factors?
    10·1 answer
  • How do lines of latitude affect how direct or indirect the Sun’s rays are on the Earth?
    8·1 answer
  • Problem
    6·1 answer
  • A helium nucleus contains two protons and two neutrons. The mass of the helium nucleus is greater than the combined masses of tw
    13·1 answer
  • Eric has a mass of 60 kg. He is standing on a scale in an elevator that is accelerating downward at 1.7 m/s². What is the approx
    6·1 answer
  • Seeing how strong our gravitational pull is here on Earth, would it be possible to kill someone if you drop a penny off the Empi
    6·1 answer
  • Sheila did 110 J of work to move a chair 2 m to the right. How much force did Sheila use to Sheila use to move the chair
    13·2 answers
  • A mountain climber weighs 42.0 N. If he climbs a hill 100m high. Calculate the work done in joules​
    11·1 answer
  • Two difference between far point and near point​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!