Answer:
The gravitational force between them is
.
Explanation:
Given that,
Distance = 1.50 m
Mass of one student = 70.0 kg
Mass of other student = 52.0 kg
We need to calculate the gravitational force
Using formula of gravitational force

Where, m₁ = mass of one student
m₂ = mass of other studen
r = distance between them
Put the value into the formula


Hence, The gravitational force between them is
.
Answer:
Potential energy plus kinetic energy equals mechanical energy because mechanical energy is basically just all of an object's energy, it's just two kinds of energy. The potential is stored inside and kinetic is being used. Both of those together is the total amount of the objects energy, which is the mechanical energy.
Explanation:
That's the description of the SOLID phase of matter.
Answer:
pi / 2 radians / s
Explanation:
One revolution = 2 pi Radians in 4 seconds
2 pi / 4 = pi/2 radians / s
Answer:
1) Q ’= 8 Q
, 2) q ’= 16 q
, 3) r ’= ¾ r
Explanation:
For this exercise we will use Coulomb's law
F = k q Q / r²
It asks us to calculate the change of any of the parameters so that the force is always F
Original values
q, Q, r
Scenario 1
q ’= 2q
r ’= 4r
F = k q ’Q’ / r’²
we substitute
F = k 2q Q ’/ (4r)²
F = k 2q Q '/ 16r²
we substitute the value of F
k q Q / r² = k q Q '/ 8r²
Q ’= 8 Q
Scenario 2
Q ’= Q
r ’= 4r
we substitute
F = k q ’Q / 16r²
k q Q / r² = k q’ Q / 16 r²
q ’= 16 q
Scenario 3
q ’= 3/2 q
Q ’= ⅜ Q
we substitute
k q Q r² = k (3/2 q) (⅜ Q) / r’²
r’² = 9/16 r²
r ’= ¾ r