C. Convection is the transfer of energy by the motion of a fluid. Fluids are by definition substances in which particles are able to flow. Hence the answer is c
The potential difference comes out to be
![10 \times 10 {}^{ - 3} m](https://tex.z-dn.net/?f=10%20%5Ctimes%2010%20%7B%7D%5E%7B%20-%203%7D%20m)
Given:
σ = 8. 85 × 10-9 c/m2
we know,
![E = \frac{σ}{2ε0}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B%CF%83%7D%7B2%CE%B50%7D)
![E = \frac{8.85 \times 10 {}^{ - 9} }{2ε0}](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B8.85%20%5Ctimes%2010%20%7B%7D%5E%7B%20-%209%7D%20%7D%7B2%CE%B50%7D)
![E = \frac{v}{d}](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7Bv%7D%7Bd%7D%20)
given the potential difference between two equipotential surface=5v
E=∆v
∆d=∆v/E
![= \frac{5 \times 8.85 \times 10 { }^{ - 12} \times 2 }{8.85 \times 10 {}^{ - 9} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Cfrac%7B5%20%5Ctimes%208.85%20%5Ctimes%2010%20%7B%20%7D%5E%7B%20-%2012%7D%20%5Ctimes%202%20%7D%7B8.85%20%5Ctimes%2010%20%7B%7D%5E%7B%20-%209%7D%20%7D%20)
![Δ = 10 \times 10 {}^{ - 3} m](https://tex.z-dn.net/?f=%CE%94%20%3D%2010%20%5Ctimes%2010%20%7B%7D%5E%7B%20-%203%7D%20m)
Thus the potential difference is
![10 \times 10 {}^{ - 3} m](https://tex.z-dn.net/?f=10%20%5Ctimes%2010%20%7B%7D%5E%7B%20-%203%7D%20m)
Learn more about potential difference from here: brainly.com/question/28165869
#SPJ4
The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.
![\boxed {\bold {Q = m \times L}}](https://tex.z-dn.net/?f=%5Cboxed%20%7B%5Cbold%20%7BQ%20%3D%20m%20%5Ctimes%20L%7D%7D%20)
If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :
![Q = m \times L \\ Q = 20 \times 80 = 1600 \: cal](https://tex.z-dn.net/?f=Q%20%3D%20m%20%5Ctimes%20L%20%5C%5C%20Q%20%3D%2020%20%5Ctimes%2080%20%3D%201600%20%5C%3A%20cal)
So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
Let's calculate the total charge of M=4.8 g=0.0048 kg of protons.
Each proton has a charge of
![q=1.6 \cdot 10^{-19} C](https://tex.z-dn.net/?f=q%3D1.6%20%5Ccdot%2010%5E%7B-19%7D%20C)
, and a mass of
![m_p = 1.67 \cdot 10^{-27}kg](https://tex.z-dn.net/?f=m_p%20%3D%201.67%20%5Ccdot%2010%5E%7B-27%7Dkg)
. So, the number of protons is
![N_p = \frac{M}{m_p}= \frac{0.0048 kg}{1.67 \cdot 10^{-27}kg}=2.87 \cdot 10^{24}](https://tex.z-dn.net/?f=N_p%20%3D%20%20%5Cfrac%7BM%7D%7Bm_p%7D%3D%20%5Cfrac%7B0.0048%20kg%7D%7B1.67%20%5Ccdot%2010%5E%7B-27%7Dkg%7D%3D2.87%20%5Ccdot%2010%5E%7B24%7D)
And so the total charge of these protons is
![Q_p = qN_p = (1.6 \cdot 10^{-19}C)(2.87 \cdot 10^{24})=4.6\cdot 10^5 C](https://tex.z-dn.net/?f=Q_p%20%3D%20qN_p%20%3D%20%281.6%20%5Ccdot%2010%5E%7B-19%7DC%29%282.87%20%5Ccdot%2010%5E%7B24%7D%29%3D4.6%5Ccdot%2010%5E5%20C)
So, the neutralize this charge, we must have
![N_e](https://tex.z-dn.net/?f=N_e)
electrons such that their total charge is
![Q_e = -4.6 \cdot 10^5 C](https://tex.z-dn.net/?f=Q_e%20%3D%20-4.6%20%5Ccdot%2010%5E5%20C)
Since the charge of each electron is
![q_e = -1.6 \cdot 10^{-19}C](https://tex.z-dn.net/?f=q_e%20%3D%20-1.6%20%5Ccdot%2010%5E%7B-19%7DC)
, the number of electrons needed is
![N_e = \frac{Q_e}{q}= \frac{-4.6 \cdot 10^5 C}{-1.6 \cdot 10^{-19}C}=2.87 \cdot 10^{24}](https://tex.z-dn.net/?f=N_e%20%3D%20%20%5Cfrac%7BQ_e%7D%7Bq%7D%3D%20%5Cfrac%7B-4.6%20%5Ccdot%2010%5E5%20C%7D%7B-1.6%20%5Ccdot%2010%5E%7B-19%7DC%7D%3D2.87%20%5Ccdot%2010%5E%7B24%7D%20%20)
which is the same as the number of protons (because proton and electron have same charge magnitude). Since the mass of a single electron is
![m_e=9.1 \cdot 10^{-31}kg](https://tex.z-dn.net/?f=m_e%3D9.1%20%5Ccdot%2010%5E%7B-31%7Dkg)
, the total mass of electrons should be