Answer:
he formula for the gravitational force includes the gravitational constant, which has a value . The unit of the gravitational force is Newtons (N). Fg = gravitational force between two objects ( ) G = gravitational constant ( ) m1 = mass of the first object (kg)
Explanation:
brainlist ?
Answer:
Force required to accelerate = 794.44 N
Explanation:
Force required = Mass of horse x Acceleration of horse
Mass of horse and rider, m= 572 kg
Acceleration of horse and rider, a = 5 kph per second
![=\frac{5*1000}{60*60} =1.39 m/s^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B5%2A1000%7D%7B60%2A60%7D%20%3D1.39%20m%2Fs%5E2)
Force required = ma
= 572 x 1.39 = 794.44 N
Force required to accelerate = 794.44 N
Answer:
a
![\theta = 0.0022 rad](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%200.0022%20rad)
b
![I = 0.000304 I_o](https://tex.z-dn.net/?f=I%20%20%3D%20%200.000304%20I_o)
Explanation:
From the question we are told that
The wavelength of the light is ![\lambda = 550 \ nm = 550 *10^{-9} \ m](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20550%20%5C%20nm%20%20%3D%20%20550%20%2A10%5E%7B-9%7D%20%5C%20m)
The distance of the slit separation is ![d = 0.500 \ mm = 5.0 *10^{-4} \ m](https://tex.z-dn.net/?f=d%20%3D%200.500%20%5C%20mm%20%3D%205.0%20%2A10%5E%7B-4%7D%20%5C%20m)
Generally the condition for two slit interference is
![dsin \theta = m \lambda](https://tex.z-dn.net/?f=dsin%20%5Ctheta%20%3D%20%20m%20%5Clambda)
Where m is the order which is given from the question as m = 2
=> ![\theta = sin ^{-1} [\frac{m \lambda}{d} ]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7Bm%20%5Clambda%7D%7Bd%7D%20%5D)
substituting values
![\theta = 0.0022 rad](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%200.0022%20rad)
Now on the second question
The distance of separation of the slit is
![d = 0.300 \ mm = 3.0 *10^{-4} \ m](https://tex.z-dn.net/?f=d%20%3D%20%200.300%20%5C%20mm%20%20%3D%20%203.0%20%2A10%5E%7B-4%7D%20%5C%20m)
The intensity at the the angular position in part "a" is mathematically evaluated as
![I = I_o [\frac{sin \beta}{\beta} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%5Cbeta%7D%7B%5Cbeta%7D%20%5D%5E2)
Where
is mathematically evaluated as
![\beta = \frac{\pi * d * sin(\theta )}{\lambda }](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%20%5Cfrac%7B%5Cpi%20%2A%20%20d%20%20%2A%20%20sin%28%5Ctheta%20%29%7D%7B%5Clambda%20%7D)
substituting values
![\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%20%5Cfrac%7B3.142%20%20%2A%20%203%2A10%5E%7B-4%7D%20%20%2A%20%20sin%280.0022%20%29%7D%7B550%20%2A10%5E%7B-9%7D%20%7D)
![\beta = 0.06581](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%200.06581)
So the intensity is
![I = I_o [\frac{sin (0.06581)}{0.06581} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%280.06581%29%7D%7B0.06581%7D%20%5D%5E2)
![I = 0.000304 I_o](https://tex.z-dn.net/?f=I%20%20%3D%20%200.000304%20I_o)
A). Both the energy and the wave travel in the same direction.
If they didn't, they'd wind up in different cities almost instantly.