Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by
where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m
T = 20.0 N
Substituting into the equation, we find the fundamental frequency:
The next frequencies (harmonics) are given by
with n being an integer number and f being the fundamental frequency.
So we get:
Answer:
V_{average} = , V_{average} = 2 V
Explanation:
he average or effective voltage of a wave is the value of the wave in a period
V_average = ∫ V dt
in this case the given volage is a square wave that can be described by the function
V (t) =
to substitute in the equation let us separate the into two pairs
V_average =
V_average =
V_{average} =
we evaluate V₀ = 4 V
V_{average} = 4 / 2)
V_{average} = 2 V
Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back
From the question we are told
If the average velocity during the athlete's walk back to the starting line in Guided Example 2.5 is – 1.50 m/s,
Generally the equation Time spent is mathematically given as
T=\frac{d}{v}
Therefore
Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back
For more information on this visit
brainly.com/question/22271063
Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
Answer:
filament bulb, filament lamp
Explanation: