Potassium Iodide have a lot of strong bonds which requires a very high temperature (high energy) to break them and change into a different state of matter.
Answer:
1. Students need to measure masses of the items.
2. Put baking soda and vinegar in a plastic bag and close it.
3. Mix the two, allowing for a reaction to occur.
4. Figure the mass of the plastic bag while the two components are inside.
5. The combined mass should be equal to what each weighed on their own.
Explanation:
The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
The answer is B. Molecules move more quickly as temperature increases.
When Allmond molecular motion stops, that is considered absolute zero. That does not mean that it cannot get colder, disapproving A.
C is just wrong.
D says when molecular motion stops the temperature STARTS to decrease, it was decreasing before it got there.