This is a defective, misleading question, and should never be asked in a Physics class.
There is no such thing as the force due to the impact.
If you know how long it takes the clam to stop once it begins to hit the dirt,
then you can calculate the impulse transferred to it, and tease a force out
of that. But the question doesn't give us the time.
It depends on the material of the surface. Was the clam dropped onto dirt ?
Into a dumpster ? Onto grass ? Concrete ? Styrofoam ? Mud ? The answer
is different in each case, and we still need to know the short length of time
AFTER it first encountered whatever surface brought it to rest.
I would kick this question back to the Physics teacher. It's meaningless,
and the longer you try to work on it, the more nonsense you'll plant into
your head that'll need to be dug out later.
Answer:
it states that energy can neither be created or destroyed
This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF
(1.9 yr) x (365.24 day/yr) x (86,400 sec/day) x (10⁹ nsec/sec)
= (1.9 x 365.24 x 86,400 x 10⁹) nanosec
= 6.00 x 10¹⁶ nanoseconds