Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.
Mass=volume x density
if we have mass and density we can calculate volume using the formula: volume=mass/density
volume of the displaced water = 600g/19.3g/cm3
volume = 31.09cm3
Answer:
One mole of U238 ( 6.022 X 10^23 atoms) is 238 grams; one mole of U235 is 235 grams. The difference in molecular weight between a mole of U235 and U238 is 3 grams, the secret to enriching uranium.
Explanation:
M(NiS₂) = 11.2 g.
n(NiS₂) = m(NiS₂) ÷ M(NiS₂).
n(NiS₂) = 11.2 g ÷ 122.8 g/mol.
n(NiS₂) = 0.091 mol.
m(O₂) = 5.43 g.
n(O₂) = 5.43 g ÷ 32 g/mol.
n(O₂) = 0.17 mol; limiting reactant.
From chemical reaction: n(NiS₂) : n(O₂) = 2 : 5.
0.091 mol : n(O₂) = 2 : 5.
n(O₂) = 0.2275 mol, not enough.
n(NiO) = 4.89 g .
n(O₂) : n(NiS) = 5 : 2.
n(NiS) = 0.068 mol.
m(NiS) = 0.068 mol · 74.7 g/mol = 5.08 g.
percent yield = 4.89 g / 5.08 g · 100% = 96.2%.