1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
5

An example of an object in projectile motion is

Physics
2 answers:
liubo4ka [24]3 years ago
6 0

A). The frog is the example.

Projectile motion is anything with constant horizontal velocity and accelerated vertical velocity. That's what the frog has, and he doesn't even know it.

Usimov [2.4K]3 years ago
4 0

Answer: a. a leaping frog

Explanation: In a projectile motion the object must have a certain path or trajectory with respect to a certain angle. For the leaping frog its velocity can be resolve into components having the final velocity at the highest point to be zero.

You might be interested in
Compare and contrast electrical and magnetic forces
erik [133]

Answer:

the eletrical forces are created when an object is both moving charges and stationary charges.

the magnetic forces are created when an act on only moving charges.

3 0
3 years ago
A 4.00-m long rod is hinged at one end. The rod is initially held in the horizontal position, and then released as the free end
Natalka [10]

Answer:

The angular acceleration α = 14.7 rad/s²

Explanation:

The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod  and L = length of rod = 4.00 m. α = angular acceleration of rod

Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.

So Iα = Wr

Substituting the value of the variables, we have

mL²α/12 = mgL/2

Simplifying by dividing through by mL, we have

mL²α/12mL = mgL/2mL

Lα/12 = g/2

multiplying both sides by 12, we have

Lα/12 × 12 = g/2 × 12

αL = 6g

α = 6g/L

α = 6 × 9.8 m/s² ÷ 4.00 m

α = 58.8 m/s² ÷ 4.00 m

α = 14.7 rad/s²

So, the angular acceleration α = 14.7 rad/s²

5 0
3 years ago
If earth's mass were half its actual value but its radius stayed the same, the escape velocity of earth would be:________
siniylev [52]

If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be V_e = \sqrt{\dfrac{GM}{r}}.

<h3>What is an escape velocity?</h3>

The ratio of the object's travel distance over a specific period of time is known as its velocity. As a vector quantity, the velocity requires both the magnitude and the direction. the slowest possible speed at which a body can break out of the gravitational pull of a certain planet or another object.

The formula to calculate the escape velocity of earth is given below:-

V_e=\sqrt{\dfrac{2GM}{r}}

Given that earth's mass was half its actual value but its radius stayed the same. The escape velocity will be calculated as below:-

V_e=\sqrt{\dfrac{2GM}{r\times 2}}

V_e = \sqrt{\dfrac{GM}{r}}.

Therefore, If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be V_e = \sqrt{\dfrac{GM}{r}}.

To know more about escape velocity follow

brainly.com/question/14042253

#SPJ4

8 0
1 year ago
What happens to electric charges within a conductor when a charged object is brought close to it
Agata [3.3K]
Well, if a charger conductor is touched to another object or close enough to touching the object then the conductor can transfer its charge to that object. Conductors allow for electrons to be transported from particle to particle, so a charged object will always distribute its charge until the repulsive forces are minimized.
8 0
4 years ago
Question 2
Delvig [45]

Answer:

Approximately 73\; {\rm N}, assuming that the acceleration of this ball is constant during the descent.

Explanation:

Assume that the acceleration of this ball, a, is constant during the entire descent.

Let x denote the displacement of this ball and let t denote the duration of the descent. The SUVAT equation x = (1/2)\, a\, t^{2} would apply.

Rearrange this equation to find an expression for the acceleration, a, of this ball:

\begin{aligned} a &= \frac{2\, x}{t^{2}}\end{aligned}.

Note that x = 11\; {\rm m} and t = 1.5\; {\rm s} in this question. Thus:

\begin{aligned} a &= \frac{2\, x}{t^{2}} \\ &= \frac{2 \times 11\; {\rm m}}{(1.5\; {\rm s})^{2}} \\ &\approx 9.78\; {\rm m \cdot s^{-2}}\end{aligned}.

Let m denote the mass of this ball. By Newton's Second Law of Motion, if the acceleration of this ball is a, the net external force on this ball would be m\, a.

Since m = 7.5\; {\rm kg} and a \approx 9.78\; {\rm m\cdot s^{-2}}, the net external force on this ball would be:

\begin{aligned} (\text{net force}) &= m\, a \\ &\approx 7.5\; {\rm kg} \times 9.78\; {\rm m\cdot s^{-2}} \\ &\approx 73\; {\rm kg \cdot m \cdot s^{-2} \\ &= 73\; {\rm N} && (1\; {\rm N} = 1\; {\rm kg \cdot m\cdot s^{-2}}) \end{aligned}.

4 0
2 years ago
Other questions:
  • Calculate the amount of work done if you use a 100N force to push a 50kg box 5m across the kitchen floor.
    9·2 answers
  • How many photons with 10 ev are required to produce 20 joules of energy?
    11·1 answer
  • To show that displacement current is necessary to make Ampère's law consistent for a charging capacitor Ampère's law relates the
    6·1 answer
  • What happens when you pay bills using a computer
    7·2 answers
  • anyone know where I can find stuff (answer key, tables, etc.) for my Newton's Law of Motion lab report on edge2020? need answers
    12·1 answer
  • Hii! help asap. i’ll give brainliest thanks!
    11·1 answer
  • Two measurments that are the same as each other are called_____?<br><br><br> What are they called???
    8·1 answer
  • Which of the following is the least important factor of a personal fitness program? A. the individual's personal conditions B. t
    11·1 answer
  • Which of the following is true for gravitational force?
    12·2 answers
  • A small car of mass 1200 kg traveling east at 60m/s collides at an intersection with a truck of mass 3000 kg that is traveling d
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!