Answer:
b. erosion.
I believe that this is the best answer
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
I believe the answer is B.
Answer: 7.88375g
Explanation:
Here is the dimensional analysis table
7g O2 | 1 mol O2 | 2 mol H2O | 18.02 g H2O
| 32 g O2 | 1 mol O2 | 1 mol H2O
You use grams to convert to moles of O2, then use that to find grams of H20
Answer:
0.4 moles of KOH is required to neutralize 0.4 moles of HNO3.
Explanation:
The equation of the reaction is
KOH(aq) + HNO3(aq) ------> KNO3(aq) + H2O(l)
This is a neutralization reaction. A neutralization reaction is a reaction between an acid and a base to form salt and water only.
Having written the balanced chemical reaction equation, we can now solve the prob!em stoichiometrically.
From the balanced reaction equation;
1 mole of KOH is required to neutralize 1 mole of HNO3
Therefore x moles of KOH is required to neutralize 0.4 moles of HNO3
x= 1×0.4/1 = 0.4 moles
Therefore, 0.4 moles of KOH is required to neutralize 0.4 moles of HNO3.