Answer:
Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Explanation:
<h3><u>Answer;</u></h3>
Polar: IF, PCl3, IF5
Nonpolar: CS2, SO3, SF6
<h3><u>Explanation:</u></h3>
- Polar molecules form when two atoms do not share electrons equally in a covalent bond.
- A molecule is classified as a polar molecule when the arrangement of the atoms is such that one end of the molecule has a positive electrical charge and the other end has a negative charge.
- A non-polar molecule does not have electrical poles.The electrons are distributed more equally.
- Therefore, a non-polar molecule does not have a profusion of charges at the opposite ends. The majority of hydrocarbon liquids are non-polar molecules.
1- One mole is = 6.02 x 10^23 of anything, So one mole of atoms is 6.02x10^23.
2- when the balloon contains 0.15 moles of Co2 gas so:
the no.of molecules of Co2 = 0.15 x 6.02x 10^23
= 9.0 x 10^22
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.