A decrease in mass will decrease an objects weight because
weight = mass x gravitational constant
<h2>
Answer:</h2>
If a car is rounding a flat curve, it experiences a centripetal force that pulls it towards the center of the circle it is rotating in.
Now,
The centripetal force can be balanced by the centrifugal force caused due to the acceleration of the body at the high speed which counters the centripetal force and in turn <u>prevents the car from slipping down the curve.</u>
So,
If the car doesn't hit the gas then the <em><u>car will fall down from the curve</u></em> as the Centripetal force will exceed the Centrifugal force of the car.
However, if the car doesn't hit the brake then the <em><u>car will maintain it's position on the flat curve</u></em> track as the centrifugal force will counter the effect of centripetal force directed towards the center.
Answer:
Answer is B.
Because the wavelength of infrared is shorter than microwave radiation
I have absolutely no clue
Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs