Answer:
B. blocks 2 & 3.
Explanation:
Block 1 has equal & opposite forces acting on it.
Block 2 has 5N on one side, 3N on the other. It will move in the direction the 5N of force is pushing.
Block 3 has no opposing force.
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
Answer:
1.9 MPa
Explanation:
Mass of person = 81 kg
Mass of chair = 3.8 kg
Diameter of contact point = 1.2 cm = D
Radius of contact point = 1.2/2 = 0.6 cm
Total mass of chair and person = 81 + 3.8 = 84.8 kg = M
Acceleration due to gravity = 9.81 m/s²
Force acting on the floor
<em>F = Mg</em>
<em>⇒F = 84.8×9.81</em>
<em>⇒F = 831.888 N</em>
Area of the contact point
<em>A = πR²</em>
<em>⇒A = π0.006²</em>
<em>⇒A = π0.000036 m²</em>
Area of the four points is
<em>4A = 0.000144π m²</em>
Pressure

Pressure exerted on the floor by each leg of the chair is 1.9 MPa
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!