Do you mean in general or in a piece of paper?
Answer:
M= F^n / a+g
Explanation:
This shows correctly Newton’s second law, where sum of forces is divided by mass is equal to acceleration. Also mass can’t be negative so F^n is positive.
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.