Answer:
A crystalline solid
Explanation:
Most solids form with a regular arrangement of their particles because the overall attractive interactions between particles are maximized, and the total intermolecular energy is minimized, when the particles pack in the most efficient manner. The regular arrangement at an atomic level is often reflected at a macroscopic level. Liquids dont use to have this kind of arrangements or shapes.
Answer:
CO is considered as a product.
Explanation:
A general chemical equation for a combination reaction follows:
To write a chemical equation, we must follow some of the rules:
The reactants must be written on the left side of the direction arrow.
A '+' sign is written between the reactants, when more than one reactants are present.
An arrow is added after all the reactants are written in the direction where reaction is taking place. Here, the reaction is taking place in forward direction.
The products must be written on the right side of the direction arrow.
A '+' sign is written between the products, when more than one products are present.
For the given chemical equation:
are the reactants in the reaction and are the products in the reaction.
Hence, CO is considered as a product.
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 
<span>5.5×10−2M in calcium chloride and 8.0×10−2M in magnesium nitrate.
What mass of sodium phosphate must be added to 1.5L of this solution to completely eliminate the hard water ion
1) Content of Ca (2+) ions
Calcium chloride = CaCl2
Ionization equation: CaCl2 ---> Ca (2+) + 2 Cl (-)
=> Molar ratios: 1 mol of CaCl2 : 1 mol Ca(2+) : 2 mol Cl(-)
Calculate the number of moles of CaCl2 in 1.5 liters of 5.5 * 10^-2 M solution
M = n / V => n = M*V = 5.5 * 10^ -2 M * 1.5 l = 0.0825 mol CaCl2
=> 0.0825 mol Ca(2+)
2) Number of phosphate ions needed to react with 0.0825 mol Ca(2+)
formula of phospahte ion: PO4 (3-)
molar ratio: 2PO4(3-) + 3Ca(2+) = Ca3 (PO4)2
Proportion: 2 mol PO4(3-) / 3 mol Ca(2+) = x / 0.0825 mol Ca(2+)
=> x = 0.0825 coml Ca(2+) * 2 mol PO4(3-) / 3 mol Ca(2+) = 0.055 mol PO4(3-)
3) Content of Mg(2+) ions
Ionization equation: Mg (NO3)2 ----> Mg(2+) + 2 NO3 (-)
Molar ratios: 1 mol Mg(NO3)2 : 1 mol Mg(2+) + 2 mol NO3(-)
number of moles of Mg(NO3)2 in 1.5 liter of 8.0 * 10^-2 M solution
n = M * V = 8.0 * 10^ -2 M * 1.5 liter = 0.12 moles Mg(NO3)2
ions of Mg(2+) = 0.12 mol Mg(NO3)2 * 1 mol Mg(2+) / mol Mg(NO3)2 = 0.12 mol Mg(2+)
4) Number of phosphate ions needed to react with 0.12 mol Mg(2+)
2PO4(3-) + 3Mg(2+) = Mg3(PO4)2
=> 2 mol PO4(3-) / 3 mol Mg(2+) = x / 0.12 mol Mg(2+)
=> x = 0.12 * 2/3 mol PO4(3-) = 0.16 mol PO4(3-)
5) Total number of moles of PO4(3-)
0.055 mol + 0.16 mol = 0.215 mol
6) Sodium phosphate
Sodium phosphate = Na3(PO4)
Na3PO4 ---> 3Na(+) + PO4(3-)
=> 1 mol Na3PO4 : 1 mol PO4(3-)
=> 0.215 mol PO4(3-) : 0.215 mol Na3PO4
mass in grams = number of moles * molar mass
molar mass of Na3 PO4 = 3*23 g/mol + 31 g/mol + 4*16 g/mol = 164 g/mol
=> mass in grams = 0.215 mol * 164 g/mol = 35.26 g
Answer: 35.26 g of sodium phosphate
</span>
The types of intermolecular forces that occur in a substance will affect its physical properties, such as its phase, melting point and boiling point.